

[image: logo banner]

Tutorial on CellML, OpenCOR & the Physiome Model Repository

Note

This tutorial originated from a translation from a single Word document in July 2015. Aspects of formatting and presentation may need further work. For reference, the original tutorial is available here: OpenCOR-Tutorial-v17.pdf.

The current tutorial has now progressed well beyond the original version and we recommend using this online version or the PDF available via ReadTheDocs [http://tutorial-on-cellml-opencor-and-pmr.readthedocs.io/].

This tutorial shows you how to install and run the OpenCOR 1 software
[APJ15], to author and edit CellML models 2 [DPPJ03] and to use the Physiome
Model Repository (PMR) 3 [eal11]. We start by giving a brief background
on the VPH-Physiome project. We then create a simple model, save it as a
CellML file and run model simulations. We next try opening existing
CellML models, both from a local directory and from the Physiome Model
Repository. The various features of CellML 4 and OpenCOR are then
explained in the context of increasingly complex biological models. A
simple linear first order ODE model and a nonlinear third order model
are introduced. Ion channel gating models are used to introduce the way
that CellML handles units, components, encapsulation groups and
connections. More complex potassium and sodium ion channel models are
then developed and subsequently imported into the Hodgkin-Huxley 1952
squid axon neural model using the CellML model import facility. The
Noble 1962 model of a cardiac cell action potential is used to
illustrate importing of units and parameters. The tutorial finishes with
sections on model annotation and the facilities available on the CellML
website and the Physiome Model Repository to support model development,
including the links to bioinformatic databases. There is a strong
emphasis in the tutorial on establishing ‘best practice’ in the creation
of CellML models and using the PMR resources, particularly in relation
to modular approaches (model hierarchies) and model annotation.

Note

This tutorial relies on readers having some background in
algebra and calculus, but tries to explain all mathematical concepts
beyond this, along with the physical principles, as they are needed for
the development of CellML models. 5

	Background to the VPH-Physiome project

	Install and Launch OpenCOR

	Create and run a simple CellML model: editing and simulation

	Open an existing CellML file from a local directory or the Physiome Model Repository

	A simple first order ODE

	The Lorenz attractor

	A model of ion channel gating and current: Introducing CellML units

	A model of the potassium channel: Introducing CellML components and connections

	A model of the sodium channel: Introducing CellML encapsulation and interfaces

	A model of the nerve action potential: Introducing CellML imports

	A model of the cardiac action potential: Importing units and parameters

	Code generation

	Model annotation

	The Physiome Model Repository and the link to bioinformatics

	Using PMR with OpenCOR

	SED-ML, functional curation and Web Lab

	Using OpenCOR with Python (beta)

	Speed comparisons with MATLAB

	References

Todo

	Colour background of CellML Text

	Annotate screen shots with svg for same look and feel

	CellML Text code is not highlighted for all display situations, currently only in environments that are using an adapted version of pygments

	Tidy up citations and BiBTeX source (possibly use Zotero to manage?)

	Make horizontal line for footnotes only visible in html output

	Check external references markup

	Consider a more suitable theme (may require changes to an existing one to get a good result)

	Must check over output (and models) from screenshots to make sure that it matches the current release of OpenCOR, especially against running experiments for the first time.

Footnotes

	1

	OpenCOR is an open source, freely available, C++ desktop application written by Alan Garny at INRIA with funding support from the Auckland Bioengineering Institute (http://www.abi.auckland.ac.nz) and the NIH-funded Virtual Physiological Rat (VPR) project led by Dan Beard at the University of Michigan (http://virtualrat.org).

	2

	For an overview and the background of CellML see http://www.cellml.org. This project is led by Poul Nielsen and David (Andre) Nickerson at the Auckland (University) Bioengineering Institute (ABI [http://www.abi.auckland.ac.nz]).

	3

	https://models.physiomeproject.org. The PMR project is led by Tommy Yu at the ABI.

	4

	For details on the specifications of CellML1.0 see http://www.cellml.org/specifications/cellml_1.0.

	5

	Please send any errors discovered or suggested improvements to p.hunter@auckland.ac.nz.

Background to the VPH-Physiome project

[image: various logos]

To be of benefit to applications in healthcare, organ and whole organism
physiology needs to be understood at both a systems level and in terms
of subcellular function and tissue properties. Understanding a
re-entrant arrhythmia in the heart, for example, depends on knowledge of
not only numerous cellular ionic current mechanisms and signal
transduction pathways, but also larger scale myocardial tissue structure
and the spatial variation in protein expression. As reductionist
biomedical science succeeds in elucidating ever more detail at the
molecular level, it is increasingly difficult for physiologists to
relate integrated whole organ function to underlying biophysically
detailed mechanisms that exploit this molecular knowledge. Multi-scale
computational modelling is used by engineers and physicists to design
and analyse mechanical, electrical and chemical engineering systems.
Similar approaches could benefit the understanding of physiological
systems. To address these challenges and to take advantage of
bioengineering approaches to modelling anatomy and physiology, the
International Union of Physiological Sciences (IUPS) formed the Physiome
Project in 1997 as an international collaboration to provide a
computational framework for understanding human physiology 1.

Primary Goals

One of the primary goals of the Physiome Project [PJ04] has been to promote
the development of standards for the exchange of information between
models. The first of these standards, dealing with time varying but
spatially lumped processes, is CellML [VarYY]. The second (dealing with
spatially and time varying processes) is FieldML [CPJ09][P13] 2. A further
goal of the Physiome Project has been the development of open source
tools for creating and visualizing standards-based models and running
model simulations. OpenCOR is the latest in a series of software
projects aimed at providing a modelling environment for CellML models.
Similar tools exist for FieldML models.

Following the publication of the STEP 3 (Strategy for a European
Physiome) Roadmap in 2006, the European Commission in 2007 initiated
the Virtual Physiological Human (VPH) project [ea13]. A related US
initiative by the Interagency Modeling and Analysis Group (IMAG) began
in 2003 4. These projects and similar initiatives are now coordinated
and are collectively referred to here as the ‘VPH-Physiome’
project 5. The VPH-Institute 6 was formed in 2012 as a virtual
organisation to providing strategic leadership, initially in Europe but
now globally, for the VPH-Physiome Project.

Footnotes

	1

	www.iups.org. The IUPS President, Denis Noble from
Oxford University, and Jim Bassingthwaighte from the University of
Washington in Seattle have been two of the driving forces behind the
Physiome Project. Peter Hunter from the University of Auckland was
appointed Chair of the newly created Physiome Commission of the IUPS
in 2000. The IUPS Physiome Committee, formed in 2008, was co-chaired
by Peter Hunter and Sasha Popel (JHU) and is now chaired by Andrew
McCulloch from UCSD. The UK Wellcome Trust provided initial support
for the Physiome Project through the Heart Physiome grant awarded in
2004 to David Paterson, Denis Noble and Peter Hunter.

	2

	CellML began as a joint public-private initiative in 1998 with
funding by the US company Physiome Sciences (CEO Jeremy Levin),
before being launched under IUPS as a fully open source project in
1999.

	3

	The STEP report, led by Marco Viceconte (University of Sheffield,
UK), is available at
www.europhysiome.org/roadmap.

	4

	This coordinates various US Governmental funding agencies involved in
multi-scale bioengineering modeling research including NIH, NSF,
NASA, the Dept of Energy (DoE), the Dept of Defense (DoD), the US
Dept of Agriculture and the Dept of Veteran Affairs. See
www.nibib.nih.gov/Research/MultiScaleModeling/IMAG.
Grace Peng of NHBIB leads the IMAG group.

	5

	Other significant contributions to the VPH-Physiome project have come
from Yoshi Kurachi in Japan
(www.physiome.jp), Stig Omholt in Norway
(www.ntnu) and Chae-Hun Leem in Korea
(www.physiome.or.kr).

	6

	www.vph-institute.org. Formed in 2012, the
inaugural Director was Marco Viceconti. The current Director is
Adriano Henney. The inaugural and current President of the
VPH-Institute is Denis Noble.

Install and Launch OpenCOR

Download OpenCOR from www.opencor.ws [http://www.opencor.ws].
Versions are available for Windows, OS X and Linux 1. Note that some aspects of this tutorial require
OpenCOR snapshot 2017-02-10 (or newer). Create a shortcut to the executable (found in the
bin directory) on your desktop and click on this to launch OpenCOR. A
window will appear that looks like Fig. 1(a).

[image: OpenCOR application]
Fig. 1 OpenCOR application (a) Default positioning of dockable windows. (b) An
alternative configuration achieved by dragging and dropping the dockable
windows.

Dockable Windows

The central area is used to interact with files. By default, no files
are open, hence the OpenCOR logo is shown instead. To the sides, there
are dockable windows, which provide additional features. Those windows
can be dragged and dropped to the top or bottom of the central area as
shown in Figure 1(b) or they can be individually undocked or closed. All
closed panels can be re-displayed by enabling them in the View menu,
or by using the Tools menu Reset All option. The key combination
Control-spacebar removes (for less clutter) or restores these
two side panels 2.

Any of the subpanels (Physiome Model Repository, File Browser, and
File Organiser) can be closed with the top right delete button, and
then restored from the View .. Windows .. menu. Files can be dragged
and dropped into the File Organiser to create a local directory
structure for your files.

Plugins

OpenCOR has a plugin architecture and can be used with or
without a range of modules. These can be viewed under the Tools menu.
By default they are all included, as shown in Fig. 2. Information
about developing plugins for OpenCOR is also available [https://www.opencor.ws/developer/develop/plugins/index.html].

[image: OpenCOR plugin menu]
Fig. 2 OpenCOR tools menu showing the plugins that are selectable. Untick
the box on the bottom left to show all plugins.

Footnotes

	1

	http://opencor.ws/user/supportedPlatforms.html

	2

	⌘ -spacebar being the equivalent on OS X.

Create and run a simple CellML model: editing and simulation

In this example we create a simple CellML model and run it. The model is
the Van der Pol oscillator1 defined by the second order equation

\[\frac{d^{2}x}{dt^{2}} - \mu\left(1 - x^{2} \right)\frac{\text{dx}}{\text{dt}} + x = 0\]

with initial conditions
\(x = - 2;\ \frac{\text{dx}}{\text{dt}} = 0\). The parameter
\(\mu\) controls the magnitude of the damping term. To create a
CellML model we convert this to two first order equations2 by
defining the velocity \(\frac{\text{dx}}{\text{dt}}\) as a new
variable \(y\):

(1)\[\frac{\text{dx}}{\text{dt}} =\ y\]

(2)\[\frac{\text{dy}}{\text{dt}} =\ \mu\left(1 - x^{2} \right)y - x\]

The initial conditions are now \(x = - 2;y = 0\).

With the central pane in Editing mode (e.g. CellML Text view), create a new CellML file:
File ‣ New ‣ CellML File and then type in the
following lines of code after deleting the three lines that indicate
where the code should go:

def model van_der_pol_model as
 def comp main as
 var t: dimensionless {init: 0};
 var x: dimensionless {init: -2};
 var y: dimensionless {init: 0};
 var mu: dimensionless {init: 1};
 // These are the ODEs
 ode(x,t)=y;
 ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;
 enddef;
enddef;

Things to note3 are:

	the closing semicolon at the end of each line (apart from the first two def statements that are opening a CellML construct);

	the need to indicate dimensions for each variable and constant (all dimensionless in this example – but more on dimensions later);

	the use of ode(x,t) to indicate a first order4 ODE in x and t

	the use of the squaring function sqr(x) for \(x^{2}\), and

	the use of ‘//’ to indicate a comment.

A partial list of mathematical functions available for OpenCOR is:

	\(x^{2}\)

	sqr(x)

	\(\sqrt{x}\)

	sqrt(x)

	\(\ln x\)

	ln(x)

	\(\log_{10}x\)

	log(x)

	\(e^{x}\)

	exp(x)

	\(x^{a}\)

	pow(x,a)

	\(\sin x\)

	sin(x)

	\(\cos x\)

	cos(x)

	\(\tan x\)

	tan(x)

	\(\csc x\)

	csc(x)

	\(\sec x\)

	sec(x)

	\(\cot x\)

	cot(x)

	\(\sin^{-1}x\)

	asin(x)

	\(\cos^{-1} x\)

	acos(x)

	\(\tan^{-1} x\)

	atan(x)

	\(\csc^{-1} x\)

	acsc(x)

	\(\sec^{-1} x\)

	asec(x)

	\(\cot^{-1}x\)

	acot(x)

	\(\sinh x\)

	sinh(x)

	\(\cosh x\)

	cosh(x)

	\(\tanh x\)

	tanh(x)

	\(\operatorname{csch} x\)

	csch(x)

	\(\operatorname{sech} x\)

	sech(x)

	\(\coth x\)

	coth(x)

	\(\sinh^{-1} x\)

	asinh(x)

	\(\cosh^{-1} x\)

	acosh(x)

	\(\tanh^{-1} x\)

	atanh(x)

	\(\operatorname{csch}^{-1} x\)

	acsch(x)

	\(\operatorname{sech}^{-1}x\)

	asech(x)

	\(\coth^{-1} x\)

	acoth(x)

Table 1. Partial list of mathematical functions available for coding in
OpenCOR.

Positioning the cursor over either of the ODEs renders the maths in
standard form above the code as shown in Fig. 3.

Note that CellML is a declarative language5 (unlike say C, Fortran
or Matlab, which are procedural languages) and therefore the order of
statements does not affect the solution. For example, the order of the
ODEs could equally well be

ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;
ode(x,t)=y;

The significance of this will become apparent later when we import
several CellML models to create a composite model.

[image: Render math equation and save CellML model]
Fig. 3 (a) Positioning the cursor over an equation and clicking
(shown by the highlighted line) renders the maths. (b) Once the model
has been successfully saved, the CellML Text view tab becomes white
rather than grey. The right hand tabs provide different views of the
CellML code.

Now save the code to a local folder using Save under the File menu (File ‣ Save)
(or ‘CTRL-S’) and choosing .cellml as the file format6. With the
CellML model saved various views, accessed via the tabs on the right
hand edge of the window, become available. One is the CellML Text view
(the view used to enter the code above); another is the Raw CellML
view that displays the way the model is stored and is intentionally
verbose to ensure that the meaning is always unambiguous (note that
positioning the cursor over part of the code shows the maths in this
view also); and another is the Raw view. Notice that ‘CTRL-T’ in the
Raw CellML view performs validation tests on the CellML model. The
CellML Text view provides a much more convenient format for entering
and editing the CellML model.

With the equations and initial conditions defined, we are ready to run
the model. To do this, click on the Simulation tab on the left hand
edge of the window. You will see three main areas - at the left hand
side of the window are the Simulation, Solvers, Graphs and
Parameters panels, which are explained below. At the right hand side
is the graphical output window, and running along the bottom of the
window is a status area, where status messages are displayed.

Simulation Panel

This area is used to set up the simulation settings.

	Starting point - the value of the variable of integration (often
time) at which the simulation will begin. Leave this at 0.

	Ending point - the point at which the simulation will end. Set to
100.

	Point interval - the interval between data points on the variable of
integration. Set to 0.1.

Just above the Simulation panel are controls for running the
simulation. These are:

Run ([image: image_run]), Pause ([image: image_stop]), Reset parameters ([image: image_reset]),
Clear simulation data ([image: image_clear]), Interval delay ([image: image_delay]),
Add([image: image_add])/Subtract([image: image_sub]) graphical output windows
and Output solution to a CSV file ([image: image_csv]).

For this model, we suggest that you create three graphical output
windows using the + button.

Solvers Panel

This area is used to configure the solver that will run the simulation.

	Name - this is used to set the solver algorithm. It will be set by
default to be the most appropriate solver for the equations you are
solving. OpenCOR allows you to change this to another solver
appropriate to the type of equations you are solving if you choose
to. For example, CVODE for ODE (ordinary differential equation)
problems, IDA for DAE (differential algebraic equation) problems,
KINSOL for NLA (non-linear algebraic) problems7.

	Other parameters for the chosen solver – e.g. Maximum step,
Maximum number of steps, and Tolerance settings for CVODE and
IDA. For more information on the solver parameters, please refer to
the documentation for the particular solver.

Note: these can all be left at their default values for our simple demo
problem8.

Graphs Panel

This shows what parameters are being plotted once these have been
defined in the Parameters panel. These can be selected/deselected by
clicking in the box next to a parameter.

Parameters Panel

This panel lists all the model parameters, and allows you to select one
or more to plot against the variable of integration or another parameter
in the graphical output windows. OpenCOR supports graphing of any
parameter against any other. All variables from the model are listed
here, arranged by the components in which they appear, and in
alphabetical order. Parameters are displayed with their variable name,
their value, and their units. The icons alongside them have the
following meanings:

	[image: image_con] Editable constant

	[image: image_sta] Editable state variable

	[image: image_ccon] Computed constant

	[image: image_rate] Rate variable

	[image: image_voi] Variable of integration

	[image: image_alg] Algebraic quantity

Right clicking on a parameter provides the options for displaying that
parameter in the currently selected graphical output window. With the
cursor highlighting the top graphical output window (a blue line appears
next to it), select x then Plot Against Variable of Integration – in
this case t - in order to plot x(t). Now move the cursor to the
second graphical output window and select y then t to plot y(t).
Finally select the bottom graphical output window, select y and select
Plot Against then Main then x to plot y(x).

Now click on the Run control. You will see a progress bar running
along the bottom of the status window. Status messages about the
successful simulation, including the time taken, are displayed in the
bottom panel. This can be hidden by dragging down on the bar just above
the panel. Fig. 4 shows the results. Use the interval delay wheel to
slow down the plotting if you want to watch the solution evolve. You can
also pause the simulation at any time by clicking on the Run control
and if you change a parameter during the pause, the simulation will
continue (when you click the Run control button again) with the new
parameter.

Note that the values shown for the various parameters are the values
they have at the end of the solution run. To restore these to their
initial values, use the Reset parameters ([image: image_reset]) button. To clear
the graphical output traces, click on the Clear simulation data
([image: image_clear]) button.

The top two graphical output panels are showing the time-dependent
solution of the x and y variables. The bottom panel shows how y
varies as a function of x. This is called the solution in state space
and it is often useful to analyse the state space solution to capture
the key characteristics of the equations being solved.

[image: Graphical output from simulation run]
Fig. 4 Graphical output from OpenCOR. The top window is x(t),
the middle is y(t) and the bottom is y(x). The Graphs panel shows that y(x) is being plotted on the graph
output window highlighted by the LH blue line.
The window at the very bottom provides runtime information on the type
of equation being solved and the simulation time (2ms in this case).
The computed variables shown in the left hand panel are at the values
they have at the end of the simulation.

To obtain numerical values for all variables (i.e. x(t) and y(t)),
click on the CSV file button ([image: image_csv]). You will be asked to enter a
filename and type (use .csv). Opening this file (e.g. with Microsoft
Excel) provides access to the numerical values. Other output types (e.g.
BiosignalML) will be available in future versions of OpenCOR.

You can move the graphical output traces around with ‘left click and
drag’ and you can change the horizontal or vertical scale with ‘right
click and drag’. Holding the SHIFT key down while clicking on a
graphical output panel allows you to interrogate the solution at any
point. Right clicking on a panel provides zoom facilities.

Note

The simulation described above can also be loaded and run directly in OpenCOR using this link.

The various plugins used by OpenCOR can be viewed under the Tools menu.
A French language version of OpenCOR is also available under the Tools
menu. An option under the File menu allows a file to be locked (also
‘CTRL-L’). To indicate that the file is locked, the background colour
switches to pink in the CellML Text and Raw CellML views and a
lock symbol appears on the filename tab. Note that OpenCOR text is case
sensitive.

Footnotes

	1

	http://en.wikipedia.org/wiki/Van_der_Pol_oscillator

	2

	Equations (1) and (2) are equations that are implemented directly in OpenCOR.

	3

	For more on the CellML Text view see http://opencor.ws/user/plugins/editing/CellMLTextView.html.

	4

	Note that a more elaborated version of this is ode(x, t, 1{dimensionless}) and a 2nd order ODE can be specified as ode(x, t, 2{dimensionless}). 1st order is assumed as the default.

	5

	Note also that the mathematical expressions in CellML are based on MathML – see http://www.w3.org/Math/

	6

	Note that .cellml is not strictly required but is best practice.

	7

	Other solvers include forward Euler, Heun and Runga-Kutta solvers (RK2 and RK4).

	8

	Note that a model that requires a stimulus protocol should have the maximum step value of the CVODE solver set to the length of the stimulus.

Open an existing CellML file from a local directory or the Physiome Model Repository

Go to the File menu and select Open… (File ‣ Open). Browse to the folder that
contains your existing models and select one. Note that this brings up a
new tabbed window and you can have any number of CellML models open at
the same time in order to quickly move between them. A model can be
removed from this list by clicking on [image: image_cross] next to the CellML model
name.

You can also access models from the left hand panel in Fig. 1(a). If
this panel is not currently visible, use ‘CTRL-spacebar’ to make it
reappear. Models can then be accessed from any one of the three
subdivisions of this panel – File Browser, Physiome Model Repository
or File Organiser. For a file under File Browser or File
Organiser, either double-click it or ‘drag&drop’ it over the central
workspace to open that model. Clicking on a model in the Physiome Model
Repository (PMR) (e.g. Chen, Popel, 2007) opens a new browser window
with that model (PMR is covered in more detail in Section 13). You can
either load this model directly into OpenCOR or create an identical copy
(clone) of the model in your local directory. Note that PMR contains
workspaces and exposures. Workspaces are online environments for the
collaborative development of models (e.g. by geographically dispersed
groups) and can have password protected access. Exposures are workspaces
that are exposed for public view and mostly contain models from
peer-reviewed journal publications. There are about 600 exposures based
on journal papers and covering many areas of cell processes and other
ODE/algebraic models, but these are currently being supplemented with
reusable protein-based models – see discussion in a Section 13.

To load a model directly into OpenCOR, click on the right-most of the
two buttons in Fig. 5 - this lists the CellML models in that exposure
- and then click on the model you want. Clicking on the left hand button
copies the PMR workspace to a local directory that you specify. This is
useful if you want to use that model as a template for a new one you are
creating.

[image: PMR window]
Fig. 5 The Physiome Model Repository (PMR) window listing all PMR
models. These can be opened from within OpenCOR using the two buttons to
the right of a model, as explained below.

In the PMR window (Fig. 5) the buttons on the right-hand side [1] lists all the CellML files for this model. Clicking on one of those [2] uploads the model into OpenCOR. The left-hand buttons [3] copies the PMR workspace to a local directory.

A simple first order ODE

[image: Solution of 1st order equation]
Fig. 6 Solution of 1st order equation.

The simplest example of a first order ODE is

\[\frac{\text{dy}}{\text{dt}} = - ay + b\]

with the solution

\[y\left(t \right) = \frac{b}{a} + \left(y\left(0 \right) - \frac{b}{a} \right).e^{- at},\]

where \(y\left(0 \right)\) or \(y_{0}\), the value of
\(y\left(t \right)\) at \(t = 0\), is the initial condition.
The final steady state solution as \(t \rightarrow \infty\) is
\(y\left(\left. \ t \right|_{\infty} \right) = y_{\infty} = \frac{b}{a}\)
(see Figure 6). Note that \(t = \tau = \frac{1}{a}\) is called the
time constant of the exponential decay, and that

\[y\left(\tau \right) = \frac{b}{a} + \left(y\left(0 \right) - \frac{b}{a} \right).e^{- 1}.\]

At \(t = \tau\) , \(y\left(t \right)\) has therefore fallen to
\(\frac{1}{e}\) (or about 37%) of the difference between the initial
(\(y\left(0 \right)\)) and final steady state (
\(y\left(\infty \right)\)) values1.

Choosing parameters \(a = \tau = 1;b = 2\) and
\(y\left(0 \right) = 5\), the CellML Text for this model is

def model first_order_model as
 def comp main as
 var t: dimensionless {init: 0};
 var y: dimensionless {init: 5};
 var a: dimensionless {init: 1};
 var b: dimensionless {init: 2};
 ode(y,t)=-a*y+b;
 enddef;
enddef;

The solution by OpenCOR is shown in Fig. 7(a) for these parameters (a
decaying exponential) and in Fig. 7(b) for parameters
\(a = 1;b = 5\) and \(y\left(0 \right) = 2\) (an inverted
decaying exponential). Note the simulation panel with Ending
point=10, Point interval=0.1. Try putting \(a = - 1\).

[image: Output from simulation of first order ODEs]
Fig. 7 OpenCOR output \(y\left(t \right)\) for the simple
ODE model with parameters (a) \(a = 1;b = 2\) and
\(y\left(0 \right) = 5\) (OpenCOR link), and (b) \(a = 1;b = 5\) and
\(y\left(0 \right) = 2\). The red arrow indicates the point
at which the trace reaches the time constant \(\tau\)
(\(e^{- 1}\) or \(\approx 37\%\) of the difference between the initial and final
solution values). The black arrows indicate the initial and final
(steady state) solutions. Note that the parameters on the left have been
reset to their initial values for this figure - normally they would be
at their final solution values.

These two solutions have the same exponential time constant
(\(\tau = \frac{1}{a} = 1\)) but different initial and final (steady
state) values.

The exponential decay curve shown on the left in Fig. 7 is a common
feature of many models and in the case of radioactive decay (for
example) is a statement that the rate of decay
(\(- \frac{\text{dy}}{\text{dt}}\)) is proportional to the
current amount of substance (\(y\)). This is illustrated on
the NZ$100 note (should you be lucky enough to possess one), shown in
Figure 8.

[image: $100 New Zealand dollar note]
Fig. 8 The exponential curve representing the naturally
occurring radioactive decay explained by the New Zealand Noble laureate
Sir Ernest Rutherford - best known for ‘splitting the atom’. This may be
the only bank note depicting the mathematical solution of a first order
ODE.

Footnotes

	1

	It is often convenient to write a first order equation as \(\tau\frac{\text{dy}}{\text{dt}} = - y + y_{\infty}\), so that its solution is expressed in terms of time constant \(\tau\), initial condition \(y_{0}\) and steady state solution \(y_{\infty}\) as: \(y\left(t \right) = y_{\infty} + \left(y_{0} - y_{\infty} \right).e^{- \frac{t}{\tau}}\).

The Lorenz attractor

An example of a third order ODE system (i.e. three 1st order
equations) is the Lorenz equations1.

[image: CellML Lorenz equations in OpenCOR]
Fig. 9 CellML Text code for the Lorenz equations.

This system has three equations:

\[\begin{split}\frac{\text{dx}}{\text{dt}} & = \sigma\left(y - x \right) \\
\frac{\text{dy}}{\text{dt}} & = x\left(\rho - z \right) - y \\
\frac{\text{dz}}{\text{dt}} & = xy - \beta z\end{split}\]

where \(\sigma,\ \rho\) and \(\beta\) are parameters.

The CellML Text code entered for these equations is shown in Fig. 9 with parameters

\(\sigma = 10\), \(\rho = 28\), \(\beta = 8/3\) = 2.66667

and initial conditions

\(x\left(0 \right) = y\left(0 \right) = z\left(0 \right) =\)1.

Solutions for \(x\left(t \right)\), \(y\left(x \right)\) and
\(z\left(x \right)\), corresponding to the time integration
parameters shown on the LHS, are shown in Fig. 10. Note that this
system exhibits ‘chaotic dynamics’ with small changes in the initial
conditions leading to quite different solution paths.

This example illustrates the value of OpenCOR’s ability to plot
variables as they are computed. Use the Simulation Delay wheel to slow
down the plotting by a factor of about 5-10,000 - in order to follow the
solution as it spirals in ever widening trajectories around the left
hand wing of the attractor before coming close to the origin that then
sends it off to the right hand wing of the attractor.

[image: Solutions of the Lorenz equations]
Fig. 10 Solutions of the Lorenz equations. Note that the
parameters on the left have been reset to their initial values for this
figure – normally they would be at their final solution values.

Solutions to the Lorenz equations are organised by the 2D ‘Lorenz
manifold’. This surface has a very beautiful shape and has become an art
form - even rendered in crochet!2 (See Fig. 11).

[image: Crotchet of the Lorenz manifold]
Fig. 11 The crocheted Lorenz manifold made by Professors Hinke Osinga and Bernd Krauskopf of the Mathematics Department at the University of Auckland, New Zealand.

Note

The simulation presented in Fig. 10 can be loaded direction into OpenCOR using this link.

Exercise for the reader

Another example of intriguing and unpredictable behaviour from a simple
deterministic ODE system is the ‘blue sky catastrophe’ model [JH02] defined
by the following equations:

\[\begin{split}\frac{\text{dx}}{\text{dt}} & = y \\
\frac{\text{dy}}{\text{dt}} & = x - x^{3} - 0.25y + A\sin t\end{split}\]

with parameter \(A = 0.2645\) and initial conditions
\(x\left(0 \right) = 0.9\), \(y\left(0 \right) = 0.4\). Run to
\(t = 500\) with \(\Delta t = 0.01\) and plot
\(x\left(t \right)\) and \(y\left(x \right)\) (OpenCOR link). Also try with
\(A = 0.265\) to see how sensitive the solution is to small changes
in parameter values.

Footnotes

	1

	http://en.wikipedia.org/wiki/Lorenz_system

	2

	http://www.math.auckland.ac.nz/~hinke/crochet/

A model of ion channel gating and current: Introducing CellML units

A good example of a model based on a first order equation is the one
used by Hodgkin and Huxley [AAF52] to describe the gating behaviour of an
ion channel (see also next three sections). Before we describe the
gating behaviour of an ion channel, however, we need to explain the
concepts of the ‘Nernst potential’ and channel conductance.

An ion channel is a protein or protein complex embedded in the bilipid
membrane surrounding a cell and containing a pore through which an ion
\(Y^{+}\) (or \(Y^{-}\)) can pass when the channel is open. If
the concentration of this ion is
\(\left\lbrack Y^{+} \right\rbrack_{o}\) outside the cell and
\(\left\lbrack Y^{+} \right\rbrack_{i}\) inside the cell, the force
driving an ion through the pore is calculated from the change in
entropy.

[image: Distribution of microstates]
Fig. 12 Distribution of microstates in a system [J97]. The 16 particles in a confined region (left) have only one possible arrangement (W = 1) and therefore zero entropy (\(k_{B}\text{lnW}=0\)). When the barrier is removed and the number of possible locations for each particle increases 4x (right), the number of possible arrangements for the 16 particles increases by 416 and the increase in entropy is therefore \(ln(416)\) or \(16ln4\). The thermal energy (temperature) of the previously confined particles on the left has been redistributed in space to achieve a more probable (higher entropy) state. If we now added more particles to the container on the right, the concentration would increase and the entropy would decrease.

Entropy \(S\) (\(J.K^{-1}\)) is a measure of the number of
microstates available to a system, as defined by Boltzmann’s equation
\(S = k_{B}\text{lnW}\), where \(W\) is the number of ways of
arranging a given distribution of microstates of a system and
\(k_{B}\) is Boltzmann’s constant1. The driving force for ion
movement is the dispersal of energy into a more probable distribution
(see Fig. 12; cf. the second law of thermodynamics2).

The energy change \(\Delta q\) associated with this change of
entropy \(\Delta S\) at temperature \(T\) is
\(\Delta q = T\Delta S\) (J).

For a given volume of fluid the number of microstates \(W\)
available to a solute (and hence the entropy of the solute) at a high
concentration is less than that for a low concentration3. The
energy difference driving ion movement from a high ion concentration
\(\left\lbrack Y^{+} \right\rbrack_{i}\) (lower entropy) to a lower
ion concentration \(\left\lbrack Y^{+} \right\rbrack_{o}\) (higher
entropy) is therefore

\(\Delta q = T\Delta S = k_{B}T\left(\ln{\left\lbrack Y^{+} \right\rbrack_{o} - \ln\left\lbrack Y^{+} \right\rbrack_{i}} \right) = k_{B}T\ln\frac{\left\lbrack Y^{+} \right\rbrack_{o}}{\left\lbrack Y^{+} \right\rbrack_{i}}\)
(\(J.ion^{-1}\))

or

\(\Delta Q = RT\ln\frac{\left\lbrack Y^{+} \right\rbrack_{o}}{\left\lbrack Y^{+} \right\rbrack_{i}}\)
(\(J.mol^{-1}\)).

\(R = k_{B}N_{A} \approx 1.34x10^{-23} (J.K^{-1}) \text{x}
6.02x10^{23} (mol^{-1}) \approx 8.4 (J.mol^{-1}K^{-1})\)
is the ‘universal gas constant’4.
At 25°C (298K), \(\text{RT} \approx 2.5 kJ.mol^{-1}\).

[image: Balance of entropic and electrostatic forces]
Fig. 13 The balance between entropic and electrostatic forces determines the Nernst potential.

Every positively charged ion that crosses the membrane raises the
potential difference and produces an electrostatic driving force that
opposes the entropic force (see Fig. 13). To move an electron of
charge e (\(\approx 1.6x10^{-19}\) C) through a voltage change of
\(\Delta\phi\) (V) requires energy \(e\Delta\phi\) (J) and
therefore the energy needed to move an ion \(Y^{+}\) of valence
z=1 (the number of charges per ion) through a voltage change of
\(\Delta\phi\) is \(\text{ze}\Delta\phi\)
(\(J.ion^{-1}\)) or
\(\text{ze}N_{A}\Delta\phi\) (\(J.mol^{-1}\)). Using Faraday’s
constant \(F = eN_{A}\), where
\(F \approx 0.96x10^{5} C.mol^{-1}\), the change in energy
density at the macroscopic scale is \(\text{zF}\Delta\phi\)
(\(J.mol^{-1}\)).

No further movement of ions takes place when the force for entropy
driven ion movement exactly equals the opposing electrostatic driving
force associated with charge movement:

\(\text{zF}\Delta\phi = \text{RT}\ln\frac{\left\lbrack Y^{+} \right\rbrack_{o}}{\left\lbrack Y^{+} \right\rbrack_{i}}\)
(\(J.mol^{-1}\)) or
\(\Delta\phi = E_{Y} = \frac{\text{RT}}{\text{zF}}\ln\frac{\left\lbrack Y^{+} \right\rbrack_{o}}{\left\lbrack Y^{+} \right\rbrack_{i}}\)
(\(J.C^{-1}\) or V)

where \(E_{Y}\) is the ‘equilibrium’ or ‘Nernst’ potential for
\(Y^{+}\). At 25°C (298K),
\(\frac{\text{RT}}{F} = \frac{2.5x10^{3}\ }{0.96x10^{5}} (J.C^{-1}) \approx 25mV\).

[image: Open channel linear IV]
Fig. 14 Open channel linear current-voltage relation

For an open channel the electrochemical current flow is driven by the
open channel conductance \({\overset{\overline{}}{g}}_{Y}\) times
the difference between the transmembrane voltage \(V\) and the
Nernst potential for that ion:

\({\overset{\overline{}}{i}}_{Y}\mathbf{=}{\overset{\overline{}}{g}}_{Y}\left(V - E_{Y} \right)\).

This defines a linear current-voltage relation (‘Ohms law’) as shown in
Fig. 14. The gates to be discussed below modify this open channel
conductance.

[image: Ion channel gating kinetics]
Fig. 15 Ion channel gating kinetics. y is the fraction of gates in the open state. α_y and β_y are the rate constants for opening and closing, respectively.

[image: Transient gate behaviour]
Fig. 16 Transient behaviour for one gate (left) and γ gates in series (right). Note that the right hand graph has an initial S-shaped increase, reflecting the multiple gates in series.

To describe the time dependent transition between the closed and open
states of the channel, Hodgkin and Huxley introduced the idea of channel
gates that control the passage of ions through a membrane ion channel.
If the fraction of gates that are open is y, the fraction of gates
that are closed is \(1-y\), and a first order ODE can be used to describe
the transition between the two states (see Fig. 15):

\(\frac{\text{dy}}{\text{dt}} = \alpha_{y}\left(1 - y \right) - \beta_{y}\text{.y}\)

where \(\alpha_{y}\)is the opening rate and \(\beta_{y}\) is
the closing rate.

The solution to this ODE is

\(y = \frac{\alpha_{y}}{\alpha_{y} + \beta_{y}} + Ae^{- \left(\alpha_{y} + \beta_{y} \right)t}\)

The constant \(A\) can be interpreted as
\(A = y\left(0 \right) - \frac{\alpha_{y}}{\alpha_{y} + \beta_{y}}\)
as in the previous example and, with \(y\left(0 \right) = 0\) (i.e.
all gates initially shut), the solution looks like Fig. 16(a).

The experimental data obtained by Hodgkin and Huxley for the squid axon,
however, indicated that the initial current flow began more slowly
(Fig. 16(b)) and they modelled this by assuming that the ion channel had
\(\gamma\) gates in series so that conduction would only occur when
all gates were at least partially open. Since \(y\) is the
probability of a gate being open, \(y^{\gamma}\) is the probability
of all \(\gamma\) gates being open (since they are assumed to be
independent) and the current through the channel is

\(i_{Y} = {\overset{\overline{}}{i}}_{Y}y^{\gamma} = y^{\gamma}{\overset{\overline{}}{g}}_{Y}\left(V - E_{Y} \right)\)

where
\({\overset{\overline{}}{i}}_{Y}{= \overset{\overline{}}{g}}_{Y}\left(V - E_{Y} \right)\)
is the steady state current through the open gate.

We can represent this in OpenCOR with a simple extension of the first
order ODE model, but in developing this model we will also demonstrate
the way in which CellML deals with units.

Note that the decision to deal with units in CellML, rather than just
ignoring them or insisting that all equations are represented in
dimensionless form, was made in order to be able to check the
physical consistency of all terms in each equation5.

There are seven base physical quantities defined by the International d’Unités (SI)6. These are (with their SI units):

	length (meter or m)

	time (second or s)

	amount of substance (mole)

	temperature (K)

	mass (kilogram or kg)

	current (amp or A)

	luminous intensity (candela).

All other units are derived from these seven. Additional derived units
that CellML defines intrinsically (with their dependence on previously
defined units) are: Hz (\(s^{-1}\)); Newton, N
(\(kg.m.s^{-1}\)); Joule, J (\(N.m\)); Pascal, Pa (\(N.m^{-2}\));
Watt, W (\(J.s^{-1}\)); Volt, V (\(W.A^{-1}\)); Siemen, S
(\(A.V^{-1}\)); Ohm, \(\Omega\) (\(V.A^{-1}\)); Coulomb, C
(\(s.A\)); Farad, F (\(C.V^{-1}\)); Weber, Wb (\(V.s\)); and Henry,
H (\(Wb.A^{-1}\)). Multiples and fractions of these are defined as
follows:

	
	Prefix

	
	deca

	hecto

	kilo

	mega

	giga

	tera

	peta

	exa

	zetta

	yotta

	Multiples

	Symbol

	
	da

	h

	k

	M

	G

	T

	P

	E

	Z

	Y

	
	Factor

	\(10^0\)

	\(10^{1}\)

	\(10^{2}\)

	\(10^{3}\)

	\(10^{6}\)

	\(10^{9}\)

	\(10^{12}\)

	\(10^{15}\)

	\(10^{18}\)

	\(10^{21}\)

	\(10^{24}\)

	
	Prefix

	
	deci

	centi

	milli

	micro

	nano

	pico

	femto

	atto

	zepto

	yocto

	Fractions

	Symbol

	
	d

	c

	m

	μ

	n

	p

	f

	a

	z

	y

	
	Factor

	\(10^{0}\)

	\(10^{-1}\)

	\(10^{-2}\)

	\(10^{-3}\)

	\(10^{-6}\)

	\(10^{-9}\)

	\(10^{-12}\)

	\(10^{-15}\)

	\(10^{-18}\)

	\(10^{-21}\)

	\(10^{-24}\)

Units for this model, with multiples and fractions, are illustrated in
the following CellML Text code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	def model first_order_model as
 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;
 def comp ion_channel as
 var V: millivolt {init: 0};
 var t: millisec {init: 0};
 var y: dimensionless {init: 0};
 var E_y: millivolt {init: -85};
 var i_y: microA_per_cm2;
 var g_y: milliS_per_cm2 {init: 36};
 var gamma: dimensionless {init: 4};
 var alpha_y: per_millisec {init: 1};
 var beta_y: per_millisec {init: 2};
 ode(y, t) = alpha_y*(1{dimensionless}-y)-beta_y*y;
 i_y = g_y*pow(y, gamma)*(V-E_y);
 enddef;
enddef;

Line 2: Define units for time as millisecs

Line 5: Define per_millisec units

Line 8: Define units for voltage as millivolts

Line 11: Define units for current as microAmps per cm2

Line 15: Define units for conductance as milliSiemens per cm2

Lines 20-28: Define units and initial conditions for variables

Line 29: Define ODE for gating variable y

Line 30: Define channel current

The solution of these equations for the parameters indicated above is
illustrated in Fig. 17.

[image: OpenCOR solution to 4 gate ion channel model]
Fig. 17 The behaviour of an ion channel with \(\gamma = 4\)
gates transitioning from the closed to the open state at a membrane
voltage \(V = 0\) (OpenCOR link). The opening and closing rate constants are
\(\alpha_{y} = 1\) ms-1 and \(\beta_{y} = 2\)
ms-1. The ion channel has an open conductance of
\({\overset{\overline{}}{g}}_{Y} = 36\) mS.cm-2 and an
equilibrium potential of \(E_{Y} = - 85\) mV. The upper transient is
the response \(y\left(t \right)\) for each gate and the lower trace
is the current through the channel. Note the slow start to the current
trace in comparison with the single gate transient
\(y\left(t \right)\).

The model of a gated ion channel presented here is used in the next two
sections for the neural potassium and sodium channels and then in
Section 11 for cardiac ion channels. The gates make the channel
conductance time dependent and, as we will see in the next section, the
experimentally observed voltage dependence of the gating rate constants
\(\alpha_{y}\) and \(\beta_{y}\) means that the channel
conductance (including the open channel conductance) is voltage
dependent. For a partially open channel (\(y < 1\)), the steady
state conductance is
\(\left(y_{\infty} \right)^{\gamma}{.\overset{\overline{}}{g}}_{Y}\),
where \(y_{\infty} = \frac{\alpha_{y}}{\alpha_{y} + \beta_{y}}\).
Moreover the gating time constants
\(\tau = \frac{1}{\alpha_{y} + \beta_{y}}\) are therefore also
voltage dependent. Both of these voltage dependent factors of ion
channel gating are important in explaining channel properties, as we
show now for the neural potassium and sodium ion channels.

Footnotes

	1

	The Brownian motion of individual molecules has energy \(k_{B}T\)
(J), where the Boltzmann constant \(k_{B}\) is approximately
\(1.34x10^{-23}\) (\(J.K^{-1}\)). At 25°C, or 298K, \(k_{B}T\)
= \(4.10^{-21}\) (J) is the minimum amount of energy to contain a
‘bit’ of information at that temperature.

	2

	The first law of thermodynamics states that energy is conserved,
and the second law (that natural processes are accompanied by an
increase in entropy of the universe) deals with the distribution of
energy in space.

	3

	At infinitely high concentration the specified volume is jammed
packed with solute and the entropy is zero.

	4

	\(N_{A}\) is Avogadro’s number (\(6.023x10^{23}\)) and is the
scaling factor between molecular and macroscopic processes.
Boltzmann’s constant \(k_{B}\) and electron charge e operate at
the atomic/molecular scale. Their effect at the physiological scale
is via the universal gas constant \(R = k_{B}N_{A}\) and
Faraday’s constant \(F = eN_{A}\).

	5

	It is well accepted in engineering analysis that thinking about and
dealing with units is a key aspect of modelling. Taking the ratio of
dimensionally consistent terms provides non-dimensional numbers which
can be used to decide when a term in an equation can be omitted in
the interests of modelling simplicity. We investigate this idea
further in a later section.

	6

	http://en.wikipedia.org/wiki/International_System_of_Units

A model of the potassium channel: Introducing CellML components and connections

We now deal specifically with the application of the previous model to
the Hodgkin and Huxley (HH) potassium channel. Following the convention
introduced by Hodgkin and Huxley, the gating variable for the potassium
channel is \(n\) and the number of gates in series is
\(\gamma = 4\), therefore

\(i_{K} = \bar{i_K}n^{4} = n^{4}\bar{g}_{K}\left(V - E_{K} \right)\)

where \(\bar{g}_{K} = \ 36 \text{mS.cm}^{-2}\),
and with intra- and extra-cellular concentrations
\(\left\lbrack K^{+} \right\rbrack_{i} = 90\text{mM}\) and
\(\left\lbrack K^{+} \right\rbrack_{o} = 3\text{mM}\), respectively, the
Nernst potential for the potassium channel (\(z = 1\) since one +ve charge on
\(K^{+}\)) is

\(E_{k} = \frac{\text{RT}}{\text{zF}}\ ln\frac{\left\lbrack K^{+} \right\rbrack_{o}}{\left\lbrack K^{+} \right\rbrack_{i}} = 25\ ln\frac{3}{90} = - 85\text{mV}\).

As noted above, this is called the equilibrium potential since it is
the potential across the cell membrane when the channel is open but no
current is flowing because the electrostatic driving force from the
potential (voltage) difference between internal and external ion charges
is exactly matched by the entropic driving force from the ion
concentration difference. \(n^{4}\bar{g}_{K}\) is
the channel conductance.

[image: Voltage dependencies of gate constants]
Fig. 18 Voltage dependence of rate constants \(\alpha_n\) and \(\beta_n\ (\text{ms}^{-1})\), time constant
\(\tau_n\ (\text{ms})\) and relative conductance \(\frac{g_{SS}}{\bar{g}_Y}\).

The gating kinetics are described (as before) by

\(\frac{\text{dn}}{\text{dt}} = \alpha_{n}\left(1 - n \right) - \beta_{n}\text{.n}\)

with time constant \(\tau_{n} = \frac{1}{\alpha_{n} + \beta_{n}}\)
(see A simple first order ODE).

The main difference from the gating model in our previous example is
that Hodgkin and Huxley found it necessary to make the rate constants
functions of the membrane potential \(V\) (see Fig. 18) as
follows1:

\(\alpha_{n} = \frac{- 0.01\left(V + 65 \right)}{e^{\frac{- \left(V + 65 \right)}{10}} - 1}\);
\(\beta_{n} = 0.125e^{\frac{- \left(V + 75 \right)}{80}}\) .

Note that under steady state conditions when
\(t \rightarrow \infty\) and

\(\frac{\text{dn}}{\text{dt}} \rightarrow 0\),
\(\left. \ n \right|_{t = \infty} = n_{\infty} = \frac{\alpha_{n}}{\alpha_{n} + \beta_{n}}\).

[image: Steady-state current voltage]
Fig. 19 The steady-state current-voltage relation for the potassium channel.

The voltage dependence of the steady state channel conductance is then

\(g_{\text{SS}} = \left(\frac{\alpha_{n}}{\alpha_{n} + \beta_{n}} \right)^{4}.\bar{g}_{Y}\).

(see Fig. 18). The steady state current-voltage relation for the
channel is illustrated in Fig. 19.

These equations are captured with OpenCOR CellML Text view (together
with the previous unit definitions) below. But first we need
to explain some further CellML concepts.

[image: CellML components legend]
Fig. 20 Key entities in a CellML model.

We introduced CellML units above. We now need to introduce three
more CellML constructs: components, connections (mappings
between components) and groups. For completeness we also show one
other construct in Fig. 20, imports, that will be used later in A model of the nerve action potential: Introducing CellML imports.

Defining components serves two purposes: it preserves a modular
structure for CellML models, and allows these component modules to be
imported into other models, as we will illustrate later [DPPJ03]. For the
potassium channel model we define components representing (i) the
environment, (ii) the potassium channel conductivity, and (iii) the
dynamics of the n-gate.

Since certain variables (t, V and n) are shared between components, we
need to also define the component maps as indicated in the CellML Text
view below.

The CellML Text code for the potassium ion channel model is as
follows2:

Potassium_ion_channel.cellml

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

	def model potassium_ion_channel as
 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit per_millivolt as
 unit millivolt {expo: -1};
 enddef;
 def unit per_millivolt_millisec as
 unit per_millivolt;
 unit per_millisec;
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit mM as
 unit mole {pref: milli};
 enddef;
 def comp environment as
 var V: millivolt { pub: out};
 var t: millisec {pub: out};
 V = sel
 case (t > 5 {millisec}) and (t < 15 {millisec}):
 -85.0 {millivolt};
 otherwise:
 0.0 {millivolt};
 endsel;
 enddef;
 def group as encapsulation for
 comp potassium_channel incl
 comp potassium_channel_n_gate;
 endcomp;
 enddef;
 def comp potassium_channel as
 var V: millivolt {pub: in , priv: out};
 var t: millisec {pub: in, priv: out};
 var n: dimensionless {priv: in};
 var i_K: microA_per_cm2 {pub: out};
 var g_K: milliS_per_cm2 {init: 36};
 var Ko: mM {init: 3};
 var Ki: mM {init: 90};
 var RTF: millivolt {init: 25};
 var E_K: millivolt;
 var K_conductance: milliS_per_cm2 {pub: out};
 E_K=RTF*ln(Ko/Ki);
 K_conductance = g_K*pow(n, 4{dimensionless});
 i_K = K_conductance*(V-E_K);
 enddef;
 def comp potassium_channel_n_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var n: dimensionless {init: 0.325, pub: out};
 var alpha_n: per_millisec;
 var beta_n: per_millisec;
 alpha_n = 0.01{per_millivolt_millisec}*(V+10{millivolt})
 /(exp((V+10{millivolt})/10{millivolt})-1{dimensionless});
 beta_n = 0.125{per_millisec}*exp(V/80{millivolt});
 ode(n, t) = alpha_n*(1{dimensionless}-n)-beta_n*n;
 enddef;
 def map between environment and potassium_channel for
 vars V and V;
 vars t and t;
 enddef;
 def map between potassium_channel and
 potassium_channel_n_gate for
 vars V and V;
 vars t and t;
 vars n and n;
 enddef;
enddef;

Lines 2-28: Define units.

Lines 29-38: Define component ‘environment’.

Lines 32-37: Define voltage step.

Lines 39-43: Define encapsulation of ‘n_gate’.

Lines 44-58: Define component ‘potassium_channel’.

Lines 59-69: Define component ‘potassium_channel_n_gate’.

Lines 70-79: Define mappings between components for variables that are shared between these components.

Note that several other features have been added:

	the event control select case which indicates that the voltage is
specified to jump from 0 mV to -85 mV at t = 5 ms then back to 0 mV at
t = 15 ms. This is only used here in order to test the K channel model;
when the potassium_channel component is later imported into a neuron
model, the environment component is not imported.

	the use of encapsulation to embed the
potassium_channel_n_gate inside the potassium_channel.
This avoids the need to establish mappings from environment to
potassium_channel_n_gate since the gate component is entirely
within the channel component.

	the use of \(\left\{ pub:in \right\}\) and
\(\left\{ pub:out \right\}\) to indicate which variables are
either supplied as inputs to a component or produced as outputs from
a component3. Any variables not labelled as in or out are
local variables or parameters defined and used only within that
component. Public (and private) interfaces are discussed in more
detail in the next section.

We now use OpenCOR, with Ending point 40 and Point interval 0.1, to
solve the equations for the potassium channel under a voltage step
condition in which the membrane voltage is clamped initially at 0mV and
then stepped down to -85mV for 10ms before being returned to 0mV. At
0mV, the steady state value of the n gate is
\(n_{\infty} = \frac{\alpha_{n}}{\alpha_{n} + \beta_{n}} =\) 0.324
and, at -85mV, \(n_{\infty} = \ \)0.945.

The voltage traces are shown at the top of Figure 21. The n-gate
response, shown next, is to open further from its partially open value
of \(n =\)0.324 at 0mV and then plateau at an almost fully open
state of \(n =\)0.945 at the Nernst potential -85mV before closing
again as the voltage is stepped back to 0mV. Note that the gate opening
behaviour (set by the voltage dependence of the \(\alpha_{n}\)
opening rate constant) is faster than the closing behaviour (set by the
voltage dependence of the \(\beta_{n}\) closing rate constant). The
channel conductance (\(= n^{4}\bar{g}_K\)) is
shown next – note the initial s-shaped conductance increase caused by
the \(n^{4}\) (four gates in series) effect on conductance. Finally
the channel current \(i_{K} =\) conductance x
\(\left(V - E_{K} \right)\) is shown at the bottom. Because the
voltage is clamped at the Nernst potential (-85mV) during the period
when the gate is opening, there is no current flow, but when the voltage
is stepped back to 0mV, the open gates begin to close and the
conductance declines but now there is a voltage gradient to drive an
outward (positive) current flow through the partially open channel –
albeit brief since the channel is closing.

[image: Kinetics of the potassium channel]
Fig. 21 Kinetics of the potassium channel gates for a voltage
step from 0mV to -85mV (OpenCOR link). The voltage clamp step is shown at the top, then
the n gate first order response, then the channel conductance, then the
channel current. Notice how the conductance is slightly slower to turn
on (due to the four gates in series) but fast to inactivate. Current
only flows when there is a non-zero conductance and a non-zero voltage
gradient. This is called the ‘tail current’.

Note that the CellML Text code above includes the Nernst equation with
its dependence on the concentrations
\(\left\lbrack K^{+} \right\rbrack_{i}\)= 90mM and
\(\left\lbrack K^{+} \right\rbrack_{o}\)= 3mM. Try raising the
external potassium concentration to
\(\left\lbrack K^{+} \right\rbrack_{o}\)= 10mM – you will then see
the Nernst potential increase from -85mV to -55mV and a negative
(inward) current flowing during the period when the membrane voltage is
clamped to -85mV. The cell is now in a ‘hyperpolarised’ state because
the potential is less than the equilibrium potential.

Note that you can change a model parameter such as
\(\left\lbrack K^{+} \right\rbrack_{o}\) either by changing the
value in the left hand Parameters window (which leaves the file
unchanged) or by editing the CellML Text code (which does change the
file when you save from CellML Text view – which you have to do to see
the effect of that change.

This potassium channel model will be used later, along with a sodium
channel model and a leakage channel model, to form the Hodgkin-Huxley
neuron model, where the membrane ion channel current flows are coupled
to the equations governing current flow along the axon to generate an
action potential.

Footnotes

	1

	The original expression in the HH paper used \(\alpha_n\ =\ \frac{0.01(v+10)}{e^{\frac{(v+10)}{10}}-1}\) and \(\beta_n\ =\ 0.125e^{\frac{v}{80}}\), where \(v\) is defined relative to the resting potential (\(-75\text{mV}\)) with +ve corresponding to +ve inward current and \(v\ =\ -(V+75)\).

	2

	From here on we use a coloured background to identify code blocks that relate to a particular CellML construct: units, components, mappings and encapsulation groups and later imports.

	3

	Note that a later version of CellML will remove the terms in and out since it is now thought that the direction of information flow should not be constrained.

A model of the sodium channel: Introducing CellML encapsulation and interfaces

The HH sodium channel has two types of gate, an \(m\) gate (of which
there are 3) that is initially closed (\(m = 0\)) before activating
and inactivating back to the closed state, and an \(h\) gate that is
initially open (\(h = 1\)) before activating and inactivating back
to the open state. The short period when both types of gate are open
allows a brief window current to pass through the channel. Therefore,

\[i_{\text{Na}} = \bar{i}_{\text{Na}}m^{3}h = m^{3}\text{h.}\bar{g}_{\text{Na}}\left(V - E_{\text{Na}} \right)\]

where \(\bar{g}_{\text{Na}} = \ \)120
mS.cm-2, and with
\(\left\lbrack \text{Na}^{+} \right\rbrack_{i}\)= 30mM and
\(\left\lbrack \text{Na}^{+} \right\rbrack_{o}\)= 140mM, the
Nernst potential for the sodium channel (z=1) is

\[E_{\text{Na}} = \frac{\text{RT}}{\text{zF}}ln\frac{\left\lbrack \text{Na}^{+} \right\rbrack_{o}}{\left\lbrack \text{Na}^{+} \right\rbrack_{i}} = 25\ ln\frac{140}{30} = 35\text{mV}.\]

The gating kinetics are described by

\[\frac{\text{dm}}{\text{dt}} = \alpha_{m}\left(1 - m \right) - \beta_{m}\text{.m};
\frac{\text{dh}}{\text{dt}} = \alpha_{h}\left(1 - h \right) - \beta_{h}\text{.h}\]

where the voltage dependence of these four rate constants is determined
experimentally to be1

\[\alpha_{m} = \frac{- 0.1\left(V + 50 \right)}{e^{\frac{- \left(V + 50 \right)}{10}} - 1};
\beta_{m} = 4e^{\frac{- \left(V + 75 \right)}{18}};
\alpha_{h} = 0.07e^{\frac{- \left(V + 75 \right)}{20}};
\beta_{h} = \frac{1}{e^{\frac{- \left(V + 45 \right)}{10}} + 1}.\]

Before we construct a CellML model of the sodium channel, we first
introduce some further CellML concepts that help deal with the
complexity of biological models: first the use of encapsulation groups
and public and private interfaces to control the visibility of
information in modular CellML components. To understand encapsulation,
it is useful to use the terms ‘parent’, ‘child’ and ‘sibling’.

def group as encapsulation for
 comp sodium_channel incl
 comp sodium_channel_m_gate;
 comp sodium_channel_h_gate;
 endcomp;
enddef;

We define the CellML components sodium_channel_m_gate and
sodium_channel_h_gate below. Each of these components has its own
equations (voltage-dependent gates and first order gate kinetics) but
they are both parts of one protein – the sodium channel – and it is
useful to group them into one sodium_channel component as shown above:

We can then talk about the sodium channel as the parent of two children:
the m gate and the h gate, which are therefore siblings. A private
interface allows a parent to talk to its children and a public
interface allows siblings to talk among themselves and to their parents
(see Fig. 22).

[image: Interfaces between CellML components]
Fig. 22 Children talk to each other as siblings, and to their
parents, via public interfaces. But the outside world can only talk
to children through their parents via a private interface. Note that
the siblings m_gate and h_gate could talk via a public
interface but only if a mapping is established between them (not needed
here).

The OpenCOR CellML Text for the HH sodium ion channel is given below.

Sodium_ion_channel.cellml

def model sodium_ion_channel as
 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit per_millivolt as
 unit millivolt {expo: -1};
 enddef;
 def unit per_millivolt_millisec as
 unit per_millivolt;
 unit per_millisec;
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit mM as
 unit mole {pref: milli};
 enddef;
 def comp environment as
 var V: millivolt {pub: out};
 var t: millisec {pub: out};
 V = sel
 case (t > 5 {millisec}) and (t < 15 {millisec}):
 -20.0 {millivolt};
 otherwise:
 -85.0 {millivolt};
 endsel;
 enddef;
 def group as encapsulation for
 comp sodium_channel incl
 comp sodium_channel_m_gate;
 comp sodium_channel_h_gate;
 endcomp;
 enddef;
 def comp sodium_channel as
 var V: millivolt {pub: in, priv: out};
 var t: millisec {pub: in, priv: out };
 var m: dimensionless {priv: in};
 var h: dimensionless {priv: in};
 var g_Na: milliS_per_cm2 {init: 120};
 var i_Na: microA_per_cm2 {pub: out};
 var Nao: mM {init: 140};
 var Nai: mM {init: 30};
 var RTF: millivolt {init: 25};
 var E_Na: millivolt;
 var Na_conductance: milliS_per_cm2 {pub: out};

 E_Na=RTF*ln(Nao/Nai);
 Na_conductance = g_Na*pow(m, 3{dimensionless})*h;
 i_Na= Na_conductance*(V-E_Na);
 enddef;
 def comp sodium_channel_m_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var alpha_m: per_millisec;
 var beta_m: per_millisec;
 var m: dimensionless {init: 0.05, pub: out};
 alpha_m = 0.1{per_millivolt_millisec}*(V+25{millivolt})
 /(exp((V+25{millivolt})/10{millivolt})-1{dimensionless});
 beta_m = 4{per_millisec}*exp(V/18{millivolt});
 ode(m, t) = alpha_m*(1{dimensionless}-m)-beta_m*m;
 enddef;
 def comp sodium_channel_h_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var alpha_h: per_millisec;
 var beta_h: per_millisec;
 var h: dimensionless {init: 0.6, pub: out};
 alpha_h = 0.07{per_millisec}*exp(V/20{millivolt});
 beta_h = 1{per_millisec}/(exp((V+30{millivolt})/10{millivolt})+1{dimensionless});
 ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;
 enddef;
 def map between environment and sodium_channel for
 vars V and V;
 vars t and t;
 enddef;
 def map between sodium_channel and sodium_channel_m_gate for
 vars V and V;
 vars t and t;
 vars m and m;
 enddef;
 def map between sodium_channel and sodium_channel_h_gate for
 vars V and V;
 vars t and t;
 vars h and h;
 enddef;
enddef;

The results of the OpenCOR computation, with Ending point 40 and
Point interval 0.1, are shown in Fig. 23 with plots \(V\left(t \right)\), \(m\left(t \right)\),
\(h\left(t \right)\), \(g_{\text{Na}}\left(t \right)\) and
\(i_{\text{Na}}(t)\) for voltage steps from (a) -85mV to -20mV, (b) -85mV to 0mV and (c) -85mV to 20mV. There are several
things to note:

	The kinetics of the m-gate are much faster than the h-gate.

	The opening behaviour is faster as the voltage is stepped to higher
values since \(\tau = \frac{1}{\alpha_{n} + \beta_{n}}\)
reduces with increasing V (see Fig. 18).

	The sodium channel conductance rises (activates) and then falls
(inactivates) under a positive voltage step from rest since the
three m-gates turn on but the h-gate turns off and the conductance
is a product of these. Compare this with the potassium channel
conductance shown in Fig. 21 which is only reduced back to zero
by stepping the voltage back to its resting value – i.e.
deactivating it.

	The only time current \(i_{\text{Na}}\) flows through the
sodium channel is during the brief period when the m-gate is
rapidly opening and the much slower h-gate is beginning to close. A
small current flows during the reverse voltage step but this is at
a time when the h-gate is now firmly off so the magnitude is very
small.

	The large sodium current \(i_{\text{Na}}\) is an inward current
and hence negative.

Note that the bottom trace does not quite line up at t=0 because the
values shown on the axes are computed automatically and hence can take
more or less space depending on their magnitude.

[image: Interfaces between CellML components]
Fig. 23 Kinetics of the sodium channel gates for voltage steps to (a) -20mV, (b) 0mV (OpenCOR link), and (c) 20mV.

Footnotes

	1

	The HH paper used \(\alpha_m\ =\ \frac{0.1(v+25)}{e^{\frac{(v+25)}{10}}-1}\); \(\beta_m\ =\ 4e^{\frac{v}{18}}\); \(\alpha_h\ =\ 0.07e^{\frac{v}{20}}\); \(\beta_h\ =\ \frac{1}{e^{\frac{(v+30)}{10}}+1}\);.

A model of the nerve action potential: Introducing CellML imports

Here we describe the first (and most famous) model of nerve fibre
electrophysiology based on the membrane ion channels that we have
discussed in the last two sections. This is the work by Alan Hodgkin and
Andrew Huxley in 1952 [AAF52] that won them (together with John Eccles) the
1963 Noble prize in Physiology or Medicine for “their discoveries
concerning the ionic mechanisms involved in excitation and inhibition in
the peripheral and central portions of the nerve cell membrane”.

Cable equation

The cable equation was developed in 18901 to predict the
degradation of an electrical signal passing along the transatlantic
cable. It is derived as follows:

[image: Current flow in a leaky cable]
Fig. 24 Current flow in a leaky cable.

If the voltage is raised at the left hand end of the cable (shown by the
deep red in Fig. 24), a current \(i_{a}\) (A) will flow that
depends on the voltage gradient, given by
\(\frac{\partial V}{\partial x}\) (\(V.m^{-1}\)) and the resistance
\(r_{a}\) (\(\Omega.m^{-1}\)), Ohm’s law gives
\(- \frac{\partial V}{\partial x} = r_{a}i_{a}\) . But if the cable
leaks current \(i_{m}\) (\(A.m^{-1}\)) per unit length of cable,
conservation of current gives
\(\frac{\partial i_{a}}{\partial x} = i_{m}\) and therefore,
substituting for \(i_{a}\) ,
\(\frac{\partial}{\partial x}\left(- \frac{1}{r_{a}}\frac{\partial V}{\partial x} \right) = i_{m}\)
. There are two sources of membrane current \(i_{m}\) , one
associated with the capacitance \(C_{m}\)
(\(\approx 1\mu F/\text{cm}^{2}\)) of the membrane,
\(C_{m}\frac{\partial V}{\partial t}\), and one associated with
holes or channels in the membrane, \(i_{\text{leak}}\). Inserting
these into the RHS gives

\[\frac{\partial}{\partial x}\left(- \frac{1}{r_{a}}\frac{\partial V}{\partial x} \right) = i_{m} = C_{m}\frac{\partial V}{\partial t} + i_{\text{leak}}\]

Rearranging gives the cable equation (for constant \(r_{a}\)):

\[C_{m}\frac{\partial V}{\partial t} = - \frac{1}{r_{a}}\frac{\partial^{2}V}{\partial x^{2}} - i_{\text{leak}}\]

where all terms represent current density (current per membrane area)
and have units of \(\mu A/\text{cm}^{2}\).

Action potentials

[image: Current flow in a neuron]
Fig. 25 Current flow in a neuron.

The cable equation can be used to model the propagation of an action
potential along a neuron or any other excitable cell. The ‘leak’ current
is associated primarily with the inward movement of sodium ions through
the membrane ‘sodium channel’, giving the inward membrane current
\(i_{\text{Na}}\), and the outward movement of potassium ions
through a membrane ‘potassium channel’, giving the outward current
\(i_{K}\) (see Fig. 25). A further small leak current
\(i_{L} = g_{L}\left(V - E_{L} \right)\) associated with chloride
and other ions is also included.

[image: Current-voltage trajectory]
Fig. 26 Current-voltage trajectory during an action potential.

When the membrane potential \(V\) rises due to axial current flow,
the Na channels open and the K channels close, such that the membrane
potential moves towards the Nernst potential for sodium. The subsequent
decline of the Na channel conductance and the increasing K channel
conductance as the voltage drops rapidly repolarises the membrane to its
resting potential of -85mV (see Fig. 26).

We can neglect2 the term
(\(- \frac{1}{r_{a}}\frac{\partial^{2}V}{\partial x^{2}}\)) (the
rate of change of axial current along the cable) for the present models
since we assume the whole cell is clamped with an axially uniform
potential. We can therefore obtain the membrane potential \(V\) by
integrating the first order ODE

\[\frac{\text{dV}}{\text{dt}} = - \left(i_{\text{Na}} + \ i_{K} + i_{L} \right)/C_{m}.\]

[image: CellML schematic HH model]
Fig. 27 A schematic cell diagram describing the current flows
across the cell bilipid membrane that are captured in the Hodgkin-Huxley
model. The membrane ion channels are a sodium (Na+) channel, a
potassium (K+) channel, and a leakage (L) channel (for chloride
and other ions) through which the currents INa, IK and
IL flow, respectively.

We use this example to demonstrate the importing feature of CellML.
CellML imports are used to bring a previously defined CellML model of
a component into the new model (in this case the Na and K channel
components defined in the previous two sections, together with a leakage
ion channel model specified below). Note that importing a component
brings the children components with it along with their connections and
units, but it does not bring the siblings of that component with it.

To establish a CellML model of the HH equations we first lay out the
model components with their public and private interfaces (Fig. 28).

[image: Overall sturcture of HH CellML model]
Fig. 28 Overall structure of the HH CellML model showing the
encapsulation hierarchy (purple), the CellML model imports
(blue) and the other key parts (units, components, and mappings) of the top level CellML model.

The HH model is the top level model. The CellML Text code for the HH
model, together with the leakage_channel model, is given below. The imported potassium_ion_channel model and
sodium_ion_channel model are unchanged from the previous sections

HH.cellml

def model HH as
 def import using "sodium_ion_channel.cellml" for
 comp Na_channel using comp sodium_channel;
 enddef;
 def import using "potassium_ion_channel.cellml" for
 comp K_channel using comp potassium_channel;
 enddef;
 def import using "leakage_ion_channel.cellml" for
 comp L_channel using comp leakage_channel;
 enddef;
 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit microF_per_cm2 as
 unit farad {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def group as encapsulation for
 comp membrane incl
 comp Na_channel;
 comp K_channel;
 comp L_channel;
 endcomp;
 enddef;
 def comp environment as
 var V: millivolt {init: -85, pub: out};
 var t: millisec {pub: out};
 enddef;
 def map between environment and membrane for
 vars V and V;
 vars t and t;
 enddef;
 def map between membrane and Na_channel for
 vars V and V;
 vars t and t;
 vars i_Na and i_Na;
 enddef;
 def map between membrane and K_channel for
 vars V and V;
 vars t and t;
 vars i_K and i_K;
 enddef;
 def map between membrane and L_channel for
 vars V and V;
 vars i_L and i_L;
 enddef;
 def comp membrane as
 var V: millivolt {pub: in, priv: out};
 var t: millisec {pub: in, priv: out};
 var i_Na: microA_per_cm2 {pub: out, priv: in};
 var i_K: microA_per_cm2 {pub: out, priv: in};
 var i_L: microA_per_cm2 {pub: out, priv: in};
 var Cm: microF_per_cm2 {init: 1};
 var i_Stim: microA_per_cm2;
 var i_Tot: microA_per_cm2;
 i_Stim = sel
 case (t >= 1{millisec}) and (t <= 1.2{millisec}):
 100{microA_per_cm2};
 otherwise:
 0{microA_per_cm2};
 endsel;
 i_Tot = i_Stim + i_Na + i_K + i_L;
 ode(V,t) = -i_Tot/Cm;
 enddef;
enddef;

Leakage_ion_channel

def model leakage_ion_channel as
 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit per_millivolt as
 unit millivolt {expo: -1};
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;
 def comp environment as
 var V: millivolt {init: 0, pub: out};
 var t: millisec {pub: out};
 enddef;
 def map between leakage_channel and environment for
 vars V and V;
 enddef;
 def comp leakage_channel as
 var V: millivolt {pub: in};
 var i_L: microA_per_cm2 {pub: out};
 var g_L: milliS_per_cm2 {init: 0.3};
 var E_L: millivolt {init: -54.4};
 i_L = g_L*(V-E_L);
 enddef;
enddef;

Note that the CellML Text code for the potassium channel is Potassium_ion_channel.cellml
and for the sodium channel is Sodium_ion_channel.cellml.

Note that the only units that need to be defined for this top level HH
model are the ones explicitly required for the membrane component. All
the other units, required for the various imported sub-models, are
imported along with the imported components.

The results generated by the HH model are shown in Fig. 29.

[image: HH results in OpenCOR]
Fig. 29 Results from OpenCOR for the Hodgkin Huxley (HH) CellML
model. The top panel shows the generated action potential. Note that the
stimulus current is not really needed as the background outward leakage
current is enough to drive the membrane potential up to the threshold
for sodium channel opening.

Important note

It is often convenient to have the sub-models – in this case the
sodium_ion_channel.cellml model, the potassium_ion_channel.cellml
model and the leakage_ion_channel.cellml model - loaded into OpenCOR
at the same time as the high level model (HH.cellml), as shown in Fig. 30
. If you make changes to a model in the CellML Text view, you must
save the file (CTRL-S) before running a new simulation since the
simulator works with the saved model. Furthermore, a change to a
sub-model will only affect the high level model which imports it if you
also save the high level model (or use the Reload option under the
File menu). An asterisk appears next to the name of a file when a change
has been made and the file has not been saved. The asterisk disappears
when the file is saved.

[image: File tabs in OpenCOR]
Fig. 30 The HH.cellml model and its three sub-models are
available under separate tabs in OpenCOR.

Footnotes

	1

	http://en.wikipedia.org/wiki/Cable_theory

	2

	This term is needed when determining the propagation of the action potential, including its wave speed.

A model of the cardiac action potential: Importing units and parameters

We now examine the Noble 1962 model [D62] that applied the Hodgkin-Huxley
approach to cardiac cells and thereby initiated the development of a
long line of cardiac cell models that, in their human cell formulation,
are now used clinically and are the most sophisticated models of any
cell type. It was the incorporation of these models into whole heart
bioengineering models that initiated the Physiome Project. We also
illustrate the use of imported units and imported parameter sets.

Cardiac cells have similar gradients of potassium and sodium ions that
operate in a similar way to neurons (as do all electrically active
cells). There is one major difference, however, in the potassium channel
that holds the cells in their resting state at -85mV (HH neuron) or
-100mV (cardiac Purkinje cells). This difference is illustrated in
Fig. 31(a). When the membrane potential is raised above the equilibrium
potential for potassium, the cardiac channel conductance shown by the
dashed line drops to nearly zero – i.e. it is an inward rectifier
since it rectifies (‘cuts off’) the outward current that otherwise would
have flowed through the channel at that potential. This is an
evolutionary adaptation of the potassium channel to avoid loss of
potassium ions out of the cell during the long plateau phase of the
cardiac action potential (Fig. 31(b)) needed to give the heart time to
contract. This evolutionary change saves the additional energy that
would otherwise be needed to pump potassium ions back into the cell, but
this Faustian “pact with the devil” is also the reason the heart is so
susceptible to conduction failure (more on this later). To explain his
data on Purkinje cells Noble [D62] postulated the existence of two inward
rectifier potassium channels, one with a conductance \(g_{K1}\) that
showed voltage dependence but no significant time dependence and another
with conductance \(g_{K2}\) that showed less severe rectification
with time dependent gating similar to the HH four-gated potassium
channel.

[image: Current voltage relations]
Fig. 31 Current-voltage relations (a) around the equilibrium
potentials for the potassium and sodium channels in cardiac cells. The
sodium channel is similar to the one in neurons but the two potassium
channels have an inward rectifying property that stops leakage of
potassium ions out of the cell when the membrane potential (illustrated
in (b)) is high during the plateau phase of the cardiac action potential.

To model the cardiac action potential in Purkinje fibres (a cardiac cell
specialised for rapid conduction from the atrio-ventricular node to the
apical ventricular myocardial tissue), Noble [D62] proposed two potassium
channels (one of these being the inwardly rectifying potassium channel
described above and the other called the delayed potassium channel), one
sodium channel (very similar to the HH neuronal sodium channel) and one
leakage channel (also similar to the HH one).

The equations for these are as follows: (as for the HH model, time is in
ms, voltages are in mV, concentrations are in mM, conductances are in
mS, currents are in µA and capacitance is in µF).

Inward rectifying \(\mathbf{i}_{\mathbf{K}\mathbf{1}}\)
potassium channel (voltage dependent only)

\[\begin{split}i_{K1} &=\ g_{K1}\left(V - E_{K} \right),\text{ with }
E_{K} = \frac{\text{RT}}{\text{zF}}ln\frac{\left\lbrack K^{+} \right\rbrack_{o}}{\left\lbrack K^{+} \right\rbrack_{i}} = 25ln\frac{2.5}{140} = - 100\text{mV}. \\
g_{K1} &=\ 1.2e^{\frac{- \left(V + 90 \right)}{50}} + 0.015e^{\frac{\left(V + 90 \right)}{60}}\end{split}\]

Inward rectifying \(\mathbf{i}_{\mathbf{K}\mathbf{2}}\)
potassium channel (voltage and time dependent)1

\[\begin{split}i_{K2} &=\ g_{K2}\left(V - E_{K} \right) \\
g_{K2} &=\ 1.2n^{4} \\
\frac{\text{dn}}{\text{dt}} &=\ \alpha_{n}\left(1 - n \right) - \beta_{n}\text{.n},
\text{ where } \alpha_{n} = \frac{- 0.0001\left(V + 50 \right)}{e^{\frac{- \left(V + 50 \right)}{10}} - 1} \text{ and } \beta_{n} = 0.002e^{\frac{- \left(V + 90 \right)}{80}}.\end{split}\]

Note that the rate constants here reflect a much slower onset of the
time dependent change in conductance than in the HH potassium channel.

Sodium channel

\[\begin{split}i_{\text{Na}} &=\ \left(g_{\text{Na}} + 140 \right)\left(V - E_{\text{Na}} \right), \text{ with } E_{\text{Na}} = \frac{\text{RT}}{\text{zF}}ln\frac{\left\lbrack \text{Na}^{+} \right\rbrack_{o}}{\left\lbrack \text{Na}^{+} \right\rbrack_{i}} = 25ln\frac{140}{30} = 35\text{mV}. \\
g_{\text{Na}} &=\ m^{3}\text{h.}g_{Na_ max} \text{ where } g_{Na_ max} = 400\text{mS}. \\
\frac{\text{dm}}{\text{dt}} &=\ \alpha_{m}\left(1 - m \right) - \beta_{m}\text{.m}, \text{ where } \alpha_{m} = \frac{- 0.1\left(V + 48 \right)}{e^{\frac{- \left(V + 48 \right)}{15}} - 1} \text{ and } \beta_{m} = \frac{0.12\left(V + 8 \right)}{e^{\frac{\left(V + 8 \right)}{5}} - 1} \\
\frac{\text{dh}}{\text{dt}} &=\ \alpha_{h}\left(1 - h \right) - \beta_{h}\text{.h},
\text{ where } \alpha_{h} = 0.17e^{\frac{- \left(V + 90 \right)}{20}}\text{ and } \beta_{h} = \frac{1}{1 + e^{\frac{- \left(V + 42 \right)}{10}}}\end{split}\]

Leakage channel

\[i_{\text{leak}} = g_{L}\left(V - E_{L} \right), \text{ with }
E_{L} = - 60mV \text{ and } g_{L} = 0.075\text{mS}.\]

Membrane equation2

\[\frac{\text{dV}}{\text{dt}} = - \left(i_{\text{Na}} + i_{K1} + i_{K2} + i_{\text{leak}} \right)/C_{m}\text{ where } C_{m} = 12\mu\text{F}.\]

Fig. 32 shows the structure of the model, including separate files for
units, parameters, and the three ion channels (the two potassium
channels are lumped together). We include the Nernst equations
dependence on potassium and sodium ion concentrations in order to
demonstrate the use of parameter values, defined in a separate
parameters file, that are read in at the top (whole cell model) level
and passed down to the individual ion channel models.

[image: Current voltage relations]
Fig. 32 Overall structure of the Noble62 CellML model showing the
encapsulation hierarchy (purple), the CellML model imports
(blue) and the other key parts (units, components &
mappings) of the top level CellML model. Note that the overall
structure of the Noble62 model differs from that of the earlier HH model
in that all units are defined in a units file and imported where needed
(shown by the import arrows). Also the ion concentration parameters are
defined in a parameters file and imported into the top level file but
passed down to the modules that use them via the mappings.

The CellML Text code for all six files is shown on the following two
pages. The arrows indicate the imports (appropriately colour coded for
units, components, and parameters).

Graphical outputs from solution of the Noble 1962 model with OpenCOR for
5000ms are shown in Fig. 32. Interpretation of the model outputs is given in the Fig. 32 legend.
The Noble62 model was developed further by Noble and others to include
additional sodium and potassium channels, calcium channels (needed for
excitation-contraction coupling), chloride channels and various ion
exchange mechanisms (Na/Ca, Na/H), co-transporters (Na/Cl, K/Cl) and
energy (ATP)-dependent pumps (Na/K, Ca) needed to model the observed
beat by beat changes in intracellular ion concentrations. These are
discussed further in Section 15.

Note

The downloadable links below are links to the raw text file that may be used for copying and pasting into OpenCOR. For the underlying CellML file that is suitable for opening with OpenCOR from disk obtain the xml file.

Raw text: Noble_1962.txt, XML file: Noble_1962.cellml [https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble_1962.cellml].

def model Noble_1962 as
 def import using "Noble62_Na_channel.xml" for
 comp Na_channel using comp sodium_channel;
 enddef;
 def import using "Noble62_K_channel.xml" for
 comp K_channel using comp potassium_channel;
 enddef;
 def import using "Noble62_L_channel.xml" for
 comp L_channel using comp leakage_channel;
 enddef;
 def import using "Noble62_units.xml" for
 unit mV using unit mV;
 unit ms using unit ms;
 unit nanoF using unit nanoF;
 unit nanoA using unit nanoA;
 enddef;
 def import using "Noble62_parameters.xml" for
 comp parameters using comp parameters;
 enddef;
 def map between parameters and membrane for
 vars Ki and Ki;
 vars Ko and Ko;
 vars Nai and Nai;
 vars Nao and Nao;
 enddef;
 def comp environment as
 var t: ms {init: 0, pub: out};
 enddef;
 def group as encapsulation for
 comp membrane incl
 comp Na_channel;
 comp K_channel;
 comp L_channel;
 endcomp;
 enddef;
 def comp membrane as
 var V: mV {init: -85, pub: out, priv: out};
 var t: ms {pub: in, priv: out};
 var Cm: nanoF {init: 12000};
 var Ki: mM {pub: in, priv: out};
 var Ko: mM {pub: in, priv: out};
 var Nai: mM {pub: in, priv: out};
 var Nao: mM {pub: in, priv: out};
 var i_Na: nanoA {pub: out, priv: in};
 var i_K: nanoA {pub: out, priv: in};
 var i_L: nanoA {pub: out, priv: in};
 ode(V, t) = -(i_Na+i_K+i_L)/Cm;
 enddef;
 def map between environment and membrane for
 vars t and t;
 enddef;
 def map between membrane and Na_channel for
 vars V and V;
 vars t and t;
 vars Nai and Nai;
 vars Nao and Nao;
 vars i_Na and i_Na;
 enddef;
 def map between membrane and K_channel for
 vars V and V;
 vars t and t;
 vars Ki and Ki;
 vars Ko and Ko;
 vars i_K and i_K;
 enddef;
 def map between membrane and L_channel for
 vars V and V;
 vars i_L and i_L;
 enddef;
enddef;

Raw text: Noble62_units.txt, XML file Noble62_units.cellml [https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_units.cellml].

def model Noble62_units as
 def unit ms as
 unit second {pref: milli};
 enddef;
 def unit per_ms as
 unit second {pref: milli, expo: -1};
 enddef;
 def unit mV as
 unit volt {pref: milli};
 enddef;
 def unit mM as
 unit mole {pref: milli};
 enddef;
 def unit per_mV as
 unit volt {pref: milli, expo: -1};
 enddef;
 def unit per_mV_ms as
 unit mV {expo: -1};
 unit ms {expo: -1};
 enddef;
 def unit microS as
 unit siemens {pref: micro};
 enddef;
 def unit nanoF as
 unit farad {pref: nano};
 enddef;
 def unit nanoA as
 unit ampere {pref: nano};
 enddef;
enddef;

Raw text: Noble62_parameters.txt, XML file Noble62_parameters.cellml [https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_parameters.cellml].

def model Noble62_parameters as
 def import using "Noble62_units.xml" for
 unit mM using unit mM;
 enddef;
 def comp parameters as
 var Ki: mM {init: 140, pub: out};
 var Ko: mM {init: 2.5, pub: out};
 var Nai: mM {init: 30, pub: out};
 var Nao: mM {init: 140, pub: out};
 enddef;
enddef;

Raw text: Noble62_Na_channel.txt, XML file Noble62_Na_channel.cellml [https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_Na_channel.cellml].

def model sodium_ion_channel as
 def import using "Noble62_units.xml" for
 unit mV using unit mV;
 unit ms using unit ms;
 unit mM using unit mM;
 unit per_ms using unit per_ms;
 unit per_mV using unit per_mV;
 unit per_mV_ms using unit per_mV_ms;
 unit microS using unit microS;
 unit nanoA using unit nanoA;
 enddef;
 def group as encapsulation for
 comp sodium_channel incl
 comp sodium_channel_m_gate;
 comp sodium_channel_h_gate;
 endcomp;
 enddef;
 def comp sodium_channel as
 var V: mV {pub: in, priv: out};
 var t: ms {pub: in, priv: out};
 var g_Na_max: microS {init: 400000};
 var g_Na: microS;
 var E_Na: mV;
 var m: dimensionless {priv: in};
 var h: dimensionless {priv: in};
 var Nai: mM {pub: in};
 var Nao: mM {pub: in};
 var RTF: mV {init: 25};
 var i_Na: nanoA {pub: out};
 E_Na = RTF*ln(Nao/Nai);
 g_Na = pow(m, 3{dimensionless})*h*g_Na_max;
 i_Na = (g_Na+140{microS})*(V-E_Na);
 enddef;
 def comp sodium_channel_m_gate as
 var V: mV {pub: in};
 var t: ms {pub: in};
 var m: dimensionless {init: 0.01, pub: out};
 var alpha_m: per_ms;
 var beta_m: per_ms;
 alpha_m = -0.10{per_mV_ms}*(V+48{mV})
 /(exp(-(V+48{mV})/15{mV})-1{dimensionless});
 beta_m = 0.12{per_mV_ms}*(V+8{mV})
 /(exp((V+8{mV})/5{mV})-1{dimensionless});
 ode(m, t)=alpha_m*(1{dimensionless}-m)-beta_m*m;
 enddef;
 def comp sodium_channel_h_gate as
 var V: mV {pub: in};
 var t: ms {pub: in};
 var h: dimensionless {init: 0.8, pub: out};
 var alpha_h: per_ms;
 var beta_h: per_ms;
 alpha_h = 0.17{per_ms}*exp(-(V+90{mV})/20{mV});
 beta_h = 1.00{per_ms}
 /(1{dimensionless}+exp(-(V+42{mV})/10{mV}));
 ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;
 enddef;
 def map between sodium_channel
 and sodium_channel_m_gate for
 vars V and V;
 vars t and t;
 vars m and m;
 enddef;
 def map between sodium_channel
 and sodium_channel_h_gate for
 vars V and V;
 vars t and t;
 vars h and h;
 enddef;
enddef;

Raw text: Noble62_K_channel.txt, XML file Noble62_K_channel.cellml [https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_K_channel.cellml].

def model potassium_ion_channel as
 def import using "Noble62_units.xml" for
 unit mV using unit mV;
 unit ms using unit ms;
 unit mM using unit mM;
 unit per_ms using unit per_ms;
 unit per_mV using unit per_mV;
 unit per_mV_ms using unit per_mV_ms;
 unit microS using unit microS;
 unit nanoA using unit nanoA;
 enddef;
 def group as encapsulation for
 comp potassium_channel incl
 comp potassium_channel_n_gate;
 endcomp;
 enddef;
 def comp potassium_channel as
 var V: mV {pub: in, priv: out};
 var t: ms {pub: in, priv: out};
 var n: dimensionless {priv: in};
 var Ki: mM {pub: in};
 var Ko: mM {pub: in};
 var RTF: mV {init: 25};
 var E_K: mV;
 var g_K1: microS;
 var g_K2: microS;
 var i_K: nanoA {pub: out};
 E_K = RTF*ln(Ko/Ki);
 g_K1 = 1200{microS}*exp(-(V+90{mV})/50{mV})
 +15{microS}*exp((V+90{mV})/60{mV});
 g_K2 = 1200{microS}*pow(n, 4{dimensionless});
 i_K = (g_K1+g_K2)*(V-E_K);
 enddef;
 def comp potassium_channel_n_gate as
 var V: mV {pub: in};
 var t: ms {pub: in};
 var n: dimensionless {init: 0.01, pub: out};
 var alpha_n: per_ms;
 var beta_n: per_ms;
 alpha_n = -0.0001{per_mV_ms}*(V+50{mV})
 /(exp(-(V+50{mV})/10{mV})-1{dimensionless});
 beta_n = 0.0020{per_ms}*exp(-(V+90{mV})/80{mV});
 ode(n,t)= alpha_n*(1{dimensionless}-n)-beta_n*n;
 enddef;
 def map between environment
 and potassium_channel for
 vars V and V;
 vars t and t;
 enddef;
 def map between potassium_channel and
 potassium_channel_n_gate for
 vars V and V;
 vars t and t;
 vars n and n;
 enddef;
enddef;

Raw text: Noble62_L_channel.txt, XML file Noble62_L_channel.cellml [https://models.physiomeproject.org/workspace/25d/rawfile/aec9dd2760d3512135605017226531ac1d4d0d0f/Noble62_L_channel.cellml].

def model leakage_ion_channel as
 def import using "Noble62_units.xml" for
 unit mV using unit mV;
 unit ms using unit ms;
 unit microS using unit microS;
 unit nanoA using unit nanoA;
 enddef;
 def comp leakage_channel as
 var V: mV {pub: in};
 var g_L: microS {init: 75};
 var E_L: mV {init: -60};
 var i_L: nanoA {pub: out};
 i_L = g_L*(V-E_L);
 enddef;
enddef;

[image: OpenCOR output of Noble 62 model]
Fig. 33 Output from the Noble62 model (OpenCOR link). Top panel is
\(V\left(t \right)\), the cardiac action potential. The next
panel has the two membrane ion channel currents
\(i_{\text{Na}}\left(t \right)\) and
\(i_{K}\left(t \right)\). Note that
\(i_{\text{Na}}\left(t \right)\) has a very brief downward (i.e.
inward current) spike that is triggered when the membrane voltage
reaches about -70mV. This is caused by the huge increase in sodium
channel conductance \(g_{\text{Na}}\left(t \right)\) shown in the
panel below associated with the simultaneous opening of the m-gate
and closing of the h-gate (5th panel down). The resting state
of about
-80mV in the top panel is set by the potassium equilibrium (Nernst)
potential via the open potassium channels. As can be seen from the
4th and bottom panels, it is the closing of the
time-dependent potassium n-gate and the corresponding decline of
potassium conductance that, with a small background leakage current
\(i_{L}\left(t \right)\), leads to the membrane potential rising
from -80mV to the threshold for activation of the sodium channel (note
the dotted red line showing the point when n(t) reaches a minimum).
Later cardiac cell models include additional ion channels that
directly affect the heart rate by controlling this rise.

We have now covered all existing features of CellML and OpenCOR. But,
most importantly, you have learned ‘best practice’ for building CellML
models, including encapsulation of sub-components and a modular approach
in which units, parameters and model components are defined in separate
files that are imported into a composite model.

Footnotes

	1

	The second inwardly rectifying channel model was later replaced with two currents and , so that modern cardiac cell models do not include but they do include the inward rectifier (see later section).

	2

	The Purkinje fibre membrane capacitance is 12 times higher than that found for squid axon. The use of \(\mu\)F ensures unit consistency with ms, mV and A since F is equivalent to \(\text{C.V}^{-1}\) or \(\text{s.A.V}^{-1}\) and therefore A/ F or A/(\(\text{ms. A. mV}^{-1}\)) on the RHS matches mV/ms on the LHS).

Code generation

It is sometimes required to export CellML models to various procedural formats to make use of a given model with existing tools. OpenCOR currently uses the CellML Language Export Definition Service provided by the CellML API to achieve this (see this article [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858041/] for details). This service takes an XML file containing a conversion definition and uses that to export a CellML model to the defined format.

The OpenCOR distribution packages include definition files for C [https://raw.githubusercontent.com/opencor/opencor/master/formats/C.xml], Fortran 77 [https://raw.githubusercontent.com/opencor/opencor/master/formats/F77.xml], Python [https://raw.githubusercontent.com/opencor/opencor/master/formats/Python.xml], and Matlab [https://raw.githubusercontent.com/opencor/opencor/master/formats/MATLAB.xml]. These definition files are available in the formats folder of your OpenCOR installation or can be downloaded and used directly using the previous links.

The C and Fortran code generated using these definition files contain functions suitable for inclusion in DAE/ODE simulation codes. Whereas the Python and Matlab code generated are complete scripts that use standard Python or Matlab methods to actually perform an default simulation. The default simulation is probably not what is needed, so the generated code can be modified or reused to meet the specific usage requirements.

Exporting CellML to code

The steps to generate code from OpenCOR are given below.

	Load the desired CellML model into OpenCOR (both CellML 1.0 and 1.1 models can be used)

	From the OpenCOR menu, choose Tools ‣ CellML File Export To ‣ User-Defined Format.

	The first file selection dialog is to provide the conversion definition file (as above).

	The second file selection dialog is to provide the file to save the generated code to.

This conversion can also be performed using OpenCOR as a command line client. In this case the command is:

$./OpenCOR -c CellMLTools::export myfile.cellml myformat.xml

or for a remote model:

$./OpenCOR -c CellMLTools::export http://mydomain.com/myfile.cellml myformat.xml

where myformat.xml can be one of the standard definition files described above.

Generated code in PMR

The Physiome Model Repository uses the same code generation service from the CellML API to generate code in the above formats for all exposures containing CellML models. These are available from the Generated Code view for CellML models. See here [https://models.physiomeproject.org/e/430/sodium_ion_channel.cellml/cellml_codegen] for an example.

Model annotation

One of the most powerful features of CellML is its ability to import
models. This means that complex models can be built up by combining
previously defined models. There is a potential problem with this
process, however, since the imported models (often developed by
completely different modellers) may represent the same biological or
biophysical entity with different expressions. The potassium channel
model in A model of the potassium channel: Introducing CellML components and connections, for example, represents the intracellular
concentration of potassium as ‘Ki’ (see the CellML Text code Potassium_ion_channel.cellml) but another model involving the intracellular potassium
concentration may use a different expression.

The solution to this dilemma is to annotate the CellML variables with
names from controlled vocabularies that have been agreed upon by the
relevant scientific community. In this case we may simply want to
annotate Ki as ‘the concentration of potassium in the cytosol’.
This expression, however, refers to three distinct entities:
concentration, potassium and cytosol. We might also want to
specify that we are referring to the cytosol of a neuron … and that the
neuron comes from a particular part of a giant squid (the experimental
animal used by Hodgkin and Huxley). Annotations can clearly get very
complicated!

What comes to our rescue here is that most scientific communities have
developed controlled vocabularies together with the relationships
between the terms of that vocabulary – called ontologies.
Furthermore relationships can always be expressed in the form
subject-predicate-object. E.g. Ki
is-the-concentration-of potassium is one relationship and
potassium in-the cytosol is another. Each object can become
the subject of another expression. We could continue, for example, with
cytosol of-the neuron, neuron of-the squid and so
on. The terms s-the-concentration-of, in-the and of-the are
the predicates and these semantically rich expressions too have to come
from controlled vocabularies. Each of these
subject-predicate-object expressions is called an RDF triple
and the World Wide Web consortium 1 has established a framework
called the Resource Description Framework (RDF 2) to support
these.

CellML models therefore contain two parts, one dealing with syntax
(the MathML definition of the models together with the structure of
components, connections, groups, units, etc) as discussed in previous
sections, and one dealing with semantics (the meanings of the
terms used in the models) discussed in this section 3. This latter
is also referred to as metadata – i.e. data about data.

In the CellML metadata specification 4 the first RDF subject of a
triple is a CellML element (e.g. a variable such as ‘Ki’), the RDF
predicate is chosen from the Biomodels Biological Qualifiers 5
list, and the RDF object is a URI (the string of characters used to
identify the name of a resource 6). Establishing these RDF links to
biological and biophysical meaning is the goal of annotation.

Note the different types of subject/object used in the RDF triples: the
concentration is a biophysical entity, potassium is a chemical
entity, the cytosol is an anatomical entity. In fact, to cover all the
terminology used in the models, CellML uses five separate ontologies:

	ChEBI (Chemical Entities of Biological Interest) www.ebi.ac.uk/chebi [http://www.ebi.ac.uk/chebi]

	GO (Gene Ontology) www.geneontology.org [http://www.geneontology.org]

	FMA (Foundation Model of Anatomy) fma.biostr.washington.edu/projects/fm/ [http://sig.biostr.washington.edu/projects/fm/]

	Cell type ontology code.google.com/p/cell-ontology [https://code.google.com/p/cell-ontology]

	OPB sbp.bhi.washington.edu/projects/the-ontology-of-physics-for-biology-opb [http://sbp.bhi.washington.edu/projects/the-ontology-of-physics-for-biology-opb]

These ontologies are available through OpenCOR’s annotation facilities
as explained below.

[image: OpenCOR annotation view]
Fig. 34 Clicking on CellML Annotation lists the CellML components with their variables ready for annotation.

If we now go back to the potassium ion channel CellML model and, under
Editing, click on CellML Annotation, the various elements of the
model (Units, Components, Variables, Groups and Connections) are
displayed (see Fig. 34). If you right click on any of them a popup
menu will appear, which you can use to expand/collapse all the child
nodes, as well as remove the metadata associated with the current CellML
element or the whole CellML file. Expanding Components lists all the
components and their variables. To annotate the potassium channel
component, select it and specify a Qualifier from the list displayed:

bio:encodes, bio:isPropertyOf
bio:hasPart, bio:isVersionOf
bio:hasProperty, bio:occursIn
bio:hasVersion, bio:hasTaxon
bio:is, model:is
bio:isDescribedBy, model:isDerivedFrom
bio:isEncodedBy, model:isDescribedBy
bio:isHomologTo, model:isInstanceOf
bio:isPartOf, model:hasInstance

If you do not know which qualifier to use, click on the
[image: image_variable_node] button to get some information about the current qualifier
(you must be connected to the internet) and go through the list of
qualifiers until you find the one that best suits your needs. Here, we
will say that you want to use bio:isVersionOf. Fig. 35 shows the
information displayed about this qualifier.

[image: Object qualifiers]
Fig. 35 The qualifiers are displayed from the top right menu.
Clicking on the most appropriate one (bio:isVersionOf) gives more
information about this qualifier in the bottom panel.

Now you need to retrieve some possible ontological terms to describe the
potassium_channel component. For this you must enter a search term,
which in our case is ‘potassium channel’ (note that regular expressions
are supported 7). This returns 24 possible ontological terms as
shown in Fig. 36. The voltage-gated potassium channel complex is the
most appropriate. Clicking on the GO identifier link shown provides more
information about this term (see Fig. 37).

[image: Ontological terms for potassium]
Fig. 36 The ontological terms listed when ‘potassium channel’ is entered into the search box next to Term.

[image: Qualifier resource and ID information]
Fig. 37 The qualifier, resource & ID information in the middle
panel appears when you click on the [image: image_add] button next to the
selected term in Fig.32. GO identifier details are listed when either of
the arrowed links are clicked.

Now, assuming that you are happy with your choice
of ontological term, you can associate it with the potassium_channel
component by clicking on its corresponding [image: image_add] button which then displays
the qualifier, resource and ID information in the middle panel as shown
in Fig. 36. If you make a mistake, this can be removed by clicking on
the [image: image_sub] button.

The first level annotation of the potassium_channel component has now
been achieved. The content of the three terms in the RDF triple are
shown in Fig. 38, along with the annotation for the variables Ki and
Ko.

[image: Annotation of the potassium channel diagram]
Fig. 38 The RDF triple used in CellML metadata to link a CellML
element (component or variable) with an ontological term from one of the
five ontologies accessed via
identifiers.org [http://www.identifiers.org/], using a predicate
qualifier from BioModels.net [http://biomodels.net/qualifiers/].
The three examples of annotated CellML model elements shown are for (1)
the potassium_channel component (this points to a GO identifier), (2)
the variable Ki, and (3) the variable Ko. These two variables are
defined within the potassium_channel component of the model and point
to CHEBI identifiers. A further annotation is needed to identify the
cellular location of those variables (since one is intracellular and one
is extracellular).

def comp {id_000000001} potassium_channel as
 var V: millivolt {pub: in, priv: out};
 var t: millisec {pub: in, priv: out};
 var n: dimensionless {priv: in};
 var i_K: microA_per_cm2 {pub: out};
 var g_K: milliS_per_cm2 {init: 36};
 var {id_000000002} Ki: mM {init: 90};
 var {id_000000003} Ko: mM {init: 3};
 var RTF: millivolt {init: 25};
 var E_K: millivolt;
 var K_conductance: milliS_per_cm2 {pub: out};

 E_K = RTF*ln(Ko/Ki);
 K_conductance = g_K*pow(n, 4{dimensionless});
 i_K = K_conductance*(V-E_K);
enddef;

When saved (the CellML Annotation tag will appear un-grayed), the
result of these annotations is to add metadata to the CellML file. If
you switch to the CellML Text view you will see that the elements that
have been annotated appear with ID numbers, as shown above.
These point to the corresponding metadata contained in the CellML file
for this model and are displayed under the qualifier-resource-Id
headings in the annotation window when you click on the element in the
editing window.

Note that the three annotations added above are all biological
annotations. Many of the other components and variables in the CellML
potassium channel model deal with biophysical entities and these require
the use of the OPB ontology (yet to be implemented in OpenCOR). The use
of composite annotations is also being developed 8, such as
“Ki is-the concentration of potassium in-the
cytosol of-the neuron of-the giant-squid”, where concentration,
potassium, cytosol, neuron and giant-squid are defined by the
ontologies OPB, ChEBI, GO, FMA and a species ontology, respectively.

Footnotes

	1

	Referred to as W3C – see www.w3.org [http://www.w3.org]

	2

	www.w3.org/RDF [http://www.w3.org/RDF]

	3

	For details on the annotation plugin see http://opencor.ws/user/plugins/editing/CellMLAnnotationView.html

	4

	See http://www.cellml.org/specifications/metadata/ and http://www.cellml.org/specifications/metadata/mcdraft

	5

	http://co.mbine.org/standards/qualifiers

	6

	http://en.wikipedia.org/wiki/Uniform_resource_identifier

	7

	http://en.wikipedia.org/wiki/Regular_expression

	8

	This is a project being carried out at the University of Washington, Seattle, using an annotation tool called SEMGEN (…).

The Physiome Model Repository and the link to bioinformatics

The Physiome Model Repository (PMR) [LCPF08] is the main online repository
for the IUPS Physiome Project, providing version and access controlled
repositories, called workspaces, for users to store their data.
Currently there are over 700 public workspaces and many
private workspaces in the repository. PMR also provides a mechanism to
create persistent access to specific revisions of a workspace, termed
exposures. Exposure plugins are available for specific types of data
(e.g. CellML or FieldML documents) which enable customizable views of
the data when browsing the repository via a web browser, or an
application accessing the repository’s content via web services.

More complete documentation describing how to use PMR is available in the PMR documentation: https://models.physiomeproject.org/docs.

The CellML models on models.physiomeproject.org [https://models.physiomeproject.org] are listed under 20 categories, shown below:
(numbers of exposures in each category are given besides the bar graph, correct as at early 2016)

Browse by category

	Calcium Dynamics

	[image: image_variable_node_140] 140

	Cardiovascular Circulation

	[image: image_variable_node_60] 60

	Cell Cycle

	[image: image_variable_node_38] 38

	Cell Migration

	[image: image_variable_node_2] 2

	Circadian Rhythms

	[image: image_variable_node_22] 22

	Electrophysiology

	[image: image_variable_node_230] 230

	Endocrine

	[image: image_variable_node_60] 60

	Excitation-Contraction Coupling

	[image: image_variable_node_22] 22

	Gene Regulation

	[image: image_variable_node_12] 12

	Hepatology

	[image: image_variable_node_29] 29

	Immunology

	[image: image_variable_node_55] 55

	Ion transport

	[image: image_variable_node_13] 13

	Mechanical Constitutive Laws

	[image: image_variable_node_19] 19

	Metabolism

	[image: image_variable_node_86] 86

	Myofilament Mechanics

	[image: image_variable_node_22] 22

	Neurobiology

	[image: image_variable_node_33] 33

	pH regulation

	[image: image_variable_node_2] 2

	PKPD

	[image: image_variable_node_11] 11

	Signal Transduction

	[image: image_variable_node_120] 120

	Synthetic Biology

	[image: image_variable_node_6] 6

Note that searching of models can be done anywhere on the site using the
search box on the upper right hand corner. An important benefit of
ensuring that the models on the PMR are annotated is that models can
then be retrieved by a web-search using any of the annotated terms in
the models.

To illustrate the features of PMR, click on the Hund, Rudy 2004 (Basic)
model in the alphabetic listing of models under the Electrophysiology category.

[image: PMR exposure page for the Hund-Rudy 2004 model]
Fig. 39 The Physiome Model Repository exposure page for the basic Hund-Rudy 2004 model [https://models.physiomeproject.org/exposure/f4b7120aa512c7f5e7a0664abcee3e8b/hund_rudy_2004_a.cellml/view].

The section labelled ‘Model Structure’ contains the journal paper
abstract and often a diagram of the model1. This is shown for the
Hund-Rudy 2004 model in Fig. 40. This model, with over 22 separate
protein model components, is also a good example of why it is important
to build models from modular components [CMEJ08], and in particular the
individual ion channels for electrophysiology models.

[image: Hund 2004 shematic diagram]
Fig. 40 A diagrammatic representation of the Hund-Rudy 2004 model.

There is a list of ‘Views Available’ for the CellML model on the
right hand side of the exposure page. The function of each of these
views is as follows:

Views Available

Documentation - Takes you to the main exposure page.

Model Metadata - Lists metadata including authors, title, journal,
Pubmed ID and model annotations.

Model Curation - Provides the curation status of the model. Note:
this is soon to be updated.

Mathematics - Displays all the mathematical equations contained in
the model.

Generated Code - Various codes (C, C-IDA, F77, MATLAB or Python) generated from
the model.

Cite this model - Provides details on how to cite use of the CellML
model.

Source view - Gives a full listing of the XML code for the model.

Launch with OpenCOR - Opens the model (or simulation experiment) in OpenCOR.

Note that CellML models are available under a Creative Commons
Attribution 3.0 Unported License2. This means that you are free to:

	Share — copy and redistribute the material in any medium or format

	Adapt — remix, transform, and build upon the material

for any purpose, including commercial use.

The next stage of content development for PMR is to provide a list of
the modular components of these models each with their own exposure. For
example, models for each of the individual ion channels used in the
publication-based electrophysiological models will be available as
standalone models that can then be imported as appropriate into a new
composite model. Similarly for enzymes in metabolic pathways and
signalling complexes in signalling pathways, etc. Some examples of these
protein modules are:

Sodium/hydrogen exchanger 3 https://models.physiomeproject.org/e/236/

Thiazide-sensitive Na-Cl cotransporter
https://models.physiomeproject.org/e/231/

Sodium/glucose cotransporter 1
https://models.physiomeproject.org/e/232/

Sodium/glucose cotransporter 2
https://models.physiomeproject.org/e/233/

Note that in each case, as well as the CellML-encoded mathematical
model, links are provided (see Fig. 41) to the UniProt Knowledgebase
for that protein, and to the Foundational Model of Anatomy (FMA)
ontology (via the EMBLE-EBI Ontology Lookup Service) for information
about tissue regions relevant to the expression of that protein (e.g.
Proximal convoluted tubule, Apical plasma membrane; Epithelial cell
of proximal tubule; Proximal straight tubule). Similar facilities are
available for SMBL-encoded biochemical reaction models through the
Biomodels database [AYY].

[image: Thiazide-sensitive Na-Cl cotransporter workspace]
Fig. 41 The PMR workspace for the Thiazide-sensitive Na-Cl
cotransporter. Bioinformatic data for this model is accessed via the
links under the headings highlight by the arrows and include
Protein (labelled A) and the model Location (labelled
B). Other information is as already described for the Hund-Rudy 2004
model.

Footnotes

	1

	These are currently hand drawn SVG diagrams but the plan is to automatically generate them from the model annotation and also (at some stage!) to animate them as the model is executed.

	2

	https://creativecommons.org/licenses/by/3.0/

Using PMR with OpenCOR

In addition to the PMR window for browsing public exposures directly in OpenCOR (PMR window) OpenCOR has the ability for users to directly create and access their workspaces in PMR.

Note

It is a feature of PMR that all data is persistent and permanent. As such, any workspaces created on the main instance of PMR (https://models.physiomeproject.org/) can not be deleted. For the purposes of teaching, we have an alternate instance of PMR (https://teaching.physiomeproject.org/) which is periodically cleared out and synschronised from the main instance. Using the teaching instance allows you to play around without the worry of things being permanent.

	Register for a user account on the teaching instance of PMR.

In order to make use of the teaching instance of PMR, you must first have an account for that instance of the repository. For teaching purposes it is best to register a new account. This can be done by first opening this link in your browser: https://teaching.physiomeproject.org. Then click the Log in button on (shown in Fig. 42) then the registration form link.

[image: PMR login button]
Fig. 42 The log in button for the teaching instance of PMR.

After filling in the names and email fields and clicking Register you will receive an email inviting you to confirm and set a password. Once that is completed you can then log in. Clicking on My Workspaces will take you to a listing of all your workspaces and provides access to the the Workspace creation form.

	Create a new workspace, in this example the title ‘Test workspace’ has been used.

The PMR Workspaces window

A window labelled PMR workspaces is available in OpenCOR (see Fig. 43). If it is not currently visible it can be selected via View ‣ Windows ‣ PMR workspaces (or perhaps the Ctrl-space shortcut).

[image: PMR workspace window]
Fig. 43 PMR workspace shown on the left hand panel in OpenCOR. The preferences button is highlighted.

	Set preferences.

Clicking the preferences button (Fig. 43) presents a Preferences dialog box with three settings: PMR instance, Name and Email. For the current purpose choose https://teaching.physiomeproject.org for the first and enter your name and email. These are used to identify you as the author of changes you submit back to the repository (view an example history [https://models.physiomeproject.org/workspace/43a/@@shortlog]).

	Log into PMR from OpenCOR.

Before you can view private information or submit changes to PMR you must first log in to PMR from OpenCOR and grant OpenCOR permission to use your account. You accomplish this by clicking on the top right button in the PMR Workspaces window and then logging in with your new user name and password (created in step 1). Then grant access for OpenCOR to gain access to your PMR workspaces. The PMR workspaces window will then show all your workspaces, which should currently consist of the new workspace created in step 2. Note that using the same top right button you can log off - and when you next authenticate you will again be asked to grant access but this time without needing to login with your password.

Right clicking on the workspace name brings up a list of options for that workspace, the first being to view the workspace within PMR (in the web browser). Another option allows you to make a local copy of a workspace on your local disk - this will create a copy of the workspace on your local computer in which you are able to make changes.

	Make a local copy of your test workspace

Using the Make Local Workspace Copy… option from the right-click menu on the workspace you created in step 2, clone the workspace to your PC. When doing this you will need to provide the folder in which you want to store the workspace contents - make sure you remember where this folder is!

	Save a CellML model to your workspace.

A CellML file opened in OpenCOR (choose any model you have access to) can be saved (File ‣ Save As…) to the folder you created for the cloned workspace. Once you have saved a model you will see the file appear under the workspace’s folder in the PMR Workspaces window. Note that the file appears under the workspace with a red patch on the logo indicating the the file is not yet flagged to upload. To upload the file to PMR, you need to choose Synchronise Workspace With PMR… from the right-click menu on the workspace folder. This will ask you to provide a description of the change you would like to submit to PMR, and display all the differences you will be synchronising. When you now click the OK button, the changes will actually be submitted to PMR and you will see the file appear on the refreshed browser window. The file icon in the PMR Workspaces window will be shown without the red or green patch. Fig. 44 shows two CellML files that have been uploaded to PMR.

[image: Committing a change to PMR]
Fig. 44 Two CellML files (New – BG Fluids model 3.cellml and new – kidney.cellml) have been uploaded from OpenCOR to PMR and can be seen in the PMR workspace on the browser window on the right.

SED-ML, functional curation and Web Lab

In the same way that CellML models can be defined unambiguously, and shared easily, in a machine-readable format, there is a need to do the same thing with ‘protocols’ - i.e. to define what you have to do to replicate/simulate an experiment, and to analyse the results. An XML standard for this called SED-ML1 is being developed by the COMBINE community and preliminary support for SED-ML has been implemented in OpenCOR in order to allow precise and reproducible control over the OpenCOR simulation and graphical output (e.g., see Fig. 33).

The recent versions of OpenCOR (since early 2016) support exporting the Simulation view configuration to a SED-ML file, which can then be read back into OpenCOR to reproduce a given simulation experiment, illustrated in Fig. 45.

[image: Export SED-ML]
Fig. 45 Once you are happy with the configuration of the Simulation view in OpenCOR, clicking the SED-ML button (highlighted) will prompt for a file to save the SED-ML document to. This document can be loaded back into OpenCOR to reproduce the simulation, or shared with collaborators so they can reproduce the simulation.

Support for SED-ML will also facilitate the curation of models according to their functional behaviour under a range of experimental scenarios.
The key idea behind functional curation is that, when mathematical and computational models are being developed, a primary goal should be the continuous comparison of those models against experimental data. When computational models are being re-used in new studies, it is similarly important to check that they behave appropriately in the new situation to which you’re applying them. To achieve this goal, a pre-requisite is to be able to replicate in-silico precisely the same protocols used in an experiment of interest. A language for describing rich ‘virtual experiment’ protocols and software for running these on compatible models is being developed in the Computational Biology Group at Oxford University2.
An online system called Web Lab3 is also being developed that supports definition of experimental protocols for cardiac electrophysiology, and allows any CellML model to be tested under these protocols [CJ15]. This enables comparison of the behaviours of cellular models under different experimental protocols: both to characterise a model’s behaviour, and comparing hypotheses by seeing how different models react under the same protocol (Fig. 46 adapted from [CJ15]).

[image: Functional curation schematic]
Fig. 46 A schematic of the way we organise model and protocol descriptions. Web Lab provides an interface to a Model/Protocol Simulator, storing and displaying the results for cardiac electrophysiology models.

The Web Lab website provides tools for comparing how two different cardiac electrophysiology models behave under the same experimental protocols. Note that Web Lab demonstration for CellML models of cardiac electrophysiology is a prototype for a more general approach to defining simulation protocols for all CellML models.

Footnotes

	1

	The ‘Simulation Experiment Description Markup Language’: sed-ml.org [http://sed-ml.org]

	2

	travis.cs.ox.ac.uk/FunctionalCuration/about.html [http://travis.cs.ox.ac.uk/FunctionalCuration/about.html] This initiative is led by Jonathan Cooper and Gary Mirams.

	3

	travis.cs.ox.ac.uk/FunctionalCuration [http://travis.cs.ox.ac.uk/FunctionalCuration].

Using OpenCOR with Python (beta)

CellML provides a good technology to create, describe, and share definitions of mathematical models. SED-ML similarly provides a good technology to share reproducible descriptions of simulation experiments. Whenever possible, it is best to make use of these standard formats to ensure the models and simulations are Findable, Accessible, Interoperable, and Reusable.

Often in research projects, however, it is not always possible to describe the model and/or simulation that you need to perform in these declarative formats. It also doesn’t make sense to try and standardise extensions or modifications in such standards for potentially short-lived, one-off, research studies. Thus having access to a flexible scripting environment that works in concert with a standards-based tool like OpenCOR allows users to make use of standards when possible but with the flexibility to adapt as needed. OpenCOR supports this through the integration of a Python interpreter within the OpenCOR application.

Python-enabled versions of OpenCOR are now relatively mature, but still undergoing extensive user testing and implementation review. As such, this functionality is only available in special snapshot releases of OpenCOR available from: https://github.com/dbrnz/opencor/releases. In this part of the tutorial we are going to be using the 20 September 2019 snapshot of the Python-enabled OpenCOR. This particular release is distributed with the following Python packages and their dependencies: numpy, scipy, and matplotlib.

Contents

	Using OpenCOR with Python (beta)

	Installation and setup

	Command line usage

	Jupyter notebooks

	Installing packages

	Basic usage

	Interactive example

	OpenCOR, CellML, and TensorFlow

	Getting prepared

	Training a machine learning model

Installation and setup

Python-enabled OpenCOR release can be installed as per the standard installation instructions. As this is an early release of the new functionality, it is best to use one of the compressed archive releases which you can extract locally rather than overwriting the stable system install. Once you have a Python-enabled release of OpenCOR your main OpenCOR window should look similar to that shown in Fig. 47.

[image: OpenCOR+Python application]
Fig. 47 OpenCOR application with default positioning of dockable windows including the Python console (right-side, middle). As described in Install and Launch OpenCOR the dockable windows can be rearranged as desired to suit your preferred layout.

Command line usage

In Python-enabled versions of OpenCOR the Python interpreter is embedded within the OpenCOR application. Which means that in order to access the OpenCOR functionality you must use that Python within the OpenCOR application rather than, for example, importing OpenCOR into your system Python. The Python console available in the OpenCOR graphical user interface handles this for you allowing a seamless user experience. However, often with Python-scripted simulation workflows it is nice to have the ability to run in a headless or batch mode. As such, Python-enabled versions of OpenCOR come with some command line scripts to help provide the user avoid the issues of making sure their Python scripts run using the correct Python interpreter.

In the top-level folder of your Python-enabled OpenCOR installation there is a script named run_python which will depend on your operating system - on Windows for example, it is called run_python.bat. Running this script without providing a Python script to execute will give you a standard Python console using the Python embedded inside the OpenCOR application:

C:\Users\andre\OpenCOR-2019-09-20-Windows> run_python.bat
Python 3.7.4 (default, Sep 20 2019, 18:29:34) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Providing a Python script will result in that script being interpreted by the interpreter embedded in the OpenCOR application:

C:\Users\andre\OpenCOR-2019-09-20-Windows> run_python.bat hello_world.py
Hello World!

Command line arguments can be provided as usual following the script to be executed.

Warning

Due to the use of a Python interpreter embedded in a graphical user interface, there can be some weirdness when trying to use UI toolkits from the command line, for example using matplotlib. This works within the OpenCOR graphical user interface, but will fail when running from the command line. Hence, it is best to currently use the command line version when working in a truly headless manner without the need for a graphical user interface.

Jupyter notebooks

There is another mode to make use of the Python-enabled versions of OpenCOR and that is to access this functionality via Jupyter notebooks. This is enabled via the run_jupyter helper script.

Todo

Write this section on Jupyter notebooks and OpenCOR.

Installing packages

As described above, the Python interpreter lives inside the OpenCOR application – making it difficult to access in order to install packages or modules that are not distributed with the Python-enabled versions of OpenCOR. To install packages using pip combined with the interactive Python console in the OpenCOR graphical user interface is the way to go here, as shown below.

Jupyter QtConsole 4.5.5
Python 3.7.4 (default, Sep 20 2019, 18:29:34) [MSC v.1916 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: !pip install [options] package

Basic usage

The scope and capabilities of the Python interface to OpenCOR is still being refined, but here we focus on use of the capabilities relevant to performing simulation experiments. Here we walk through the basic usage of using Python to interact with OpenCOR in performing a simulation experiment.

As with any Python script, we must first import the OpenCOR module to expose the functionality that we desire.

import OpenCOR as oc

The main object that we are interested in dealing with is OpenCOR’s representation of a simulation. OpenCOR is able to generate a default simulation for a CellML model or to load a SED-ML document which defines the simulation experiment in detail. As the exposed simulation features are not yet complete, it is best to load a SED-ML document giving full control over the simulation settings. The output plots defined in the SED-ML will also be used when running the Python code via the interactive Python console in OpenCOR, but will be disregarded when running via the command line mode.

for a local file
simulation = oc.openSimulation('path/to/cellml/or/sedml')

OR for loading a remote file, e.g., from the model repository:
simulation = oc.openRemoteSimulation('URL/of/cellml/or/sedml')

OR if using the OpenCOR GUI and models are already loaded
simulation = oc.simulation() # The model in the currently active tab

For a given simulation, the data object houses all the relevant information and pointers to the OpenCOR internal data representations.

data = simulation.data()

And the data object allows us to define the interval of interest for this simulation experiment.

data.setStartingPoint(start)
data.setEndingPoint(end)
data.setPointInterval(pointInterval)

As in the OpenCOR graphical user interface, constant parameters and initial values for the state variables can also be set via the Python interface OpenCOR provides. When address specific variables in a model, they are mapped to Python dictionaries using key’s comprising of component_name/variable_name. This provides a method to uniquely identify all variables in a model.

Set constant parameter values
data.constants()['key'] = value

Set initial value for state variables
data.states()['key'] = value

Once you have the simulation defined that you would like to perform, it can be executed with the following.

simulation.run()

If you are using the OpenCOR graphical user interface and have define plots for the current simulation experiment, then these will be displayed as usual during the execution of the simulation. The simulation results can also be used directly in the Python script as shown below.

Access simulation results
results = simulation.results()

grab a specific state variable results
r1 = results.states()['key'].values() # Numpy array

grab a specific algebraic variable results
r2 = results.algebraic()['key'].values() # Numpy array

access the full datastore representation of the simulation results
ds = results.dataStore()
the dictionary or all result variables in the simulation
variables = ds.voiAndVariables()

grab a the results for a given variable
r3 = variables['key'].values() # Python list of values

When continuing a simulation from an existing state, the default behaviour is to continue from the current state. The system can be reset to the initial state as shown below. As with using the OpenCOR graphical user interface, this includes resetting any parameters or initial values that you may have set via the GUI or the Python interface.

Reset things if needed when re-running
simulation.resetParameters()
clear any existing results
simulation.clearResults()

Interactive example

In this example, we use the simple ODE model introduced earlier in the tutorial. We will be using the Python console in the OpenCOR graphical user interface, working with the SED-ML loaded directly from the Physiome Model Repository. As we are using the OpenCOR application, you should see the user interface updating in response the to various Python commands. The following commands should be copy-pasted one at a time into the Python console to observe the behaviour.

import OpenCOR as oc

simulation = oc.openRemoteSimulation('https://models.physiomeproject.org/workspace/25d/rawfile/60ac9389285471a704f2f4be6e1a8ba5cbf45d1a/Firstorder.sedml')
data = simulation.data()
data.setStartingPoint(0)
data.setEndingPoint(10)
data.setPointInterval(0.1)
simulation.run()

reset
simulation.resetParameters()
simulation.clearResults()

change parameter values
data.constants()['main/b'] = 5
data.states()['main/y'] = 2
simulation.run()

look at the simulation results
results = simulation.results()
y = results.states()['main/y'].values() # Numpy array
print(y)

ds = results.dataStore()
variables = ds.voiAndVariables()
y = variables['main/y'].values() # Python list of values
print(y)

a = variables['main/a'].values()
print(a)

In working through this example, you should be able to reproduce the results as seen in Fig. 7.

OpenCOR, CellML, and TensorFlow

TensorFlow [https://www.tensorflow.org/] is a popular end-to-end open source machine learning platform in Python. Together with the Python-enabled OpenCOR capabilities and CellML itself, this opens up a new world of application of machine learning in computational physiology. This is a very new application that we are still actively developing, but here we give a brief demonstration that might help show what could be achieved.

Getting prepared

The first step is to ensure that you have TensorFlow installed. As described above, Python packages need to be installed in the Python embedded inside OpenCOR. We are using here TensorFlow version 1.15, which can be installed using the OpenCOR Python console with the following command. (TensorFlow 2.0 will not work with this demonstration.)

In [1]: !pip install tensorflow==1.15

We have prepared a couple of Python scripts that you can use for this demonstration. The first is MPL.py, which is a TensorFlow-based script to construct a simple MLP (fully-connected feed-forward network or MultiLayer Perceptron) and trains it with a given dataset. The second is train-tf-model.py, which will first generate a set of training data using the O’Hara & Rudy [https://www.ncbi.nlm.nih.gov/pubmed/21637795] cardiac electrophysiology model, which has been encoded in the CellML format as an extension of this model [https://models.physiomeproject.org/e/4eb] in the Physiome Model Repository. Both files should be downloaded into the same folder on your local machine.

Finally, in the OpenCOR Python console we need to make sure the plotting happens in-place rather than trying to bring windows. This is done by exectuing the following command in the OpenCOR Python console.

In [1]: %matplotlib inline

Training a machine learning model

The train-tf-model.py script is the one that contains the definition of the workflow we are demonstrating here. It is easiest to open this file in your preferred Python editor and follow through the script, with the comments attempting to explain what is happening.

This script can be run in the OpenCOR Python console by first making sure the console is looking at the correct folder,

In [1]: %cd path/to/folder/with/downloaded/scripts

and then running the training script as follows.

In [1]: %run train-tf-model.py

All going well, this should result in something similar to Fig. 48.

[image: Training a TensorFlow machine learning model using a CellML model in OpenCOR.]
Fig. 48 The result of training a TensorFlow machine learning model using data from a simulation of a CellML model in OpenCOR and then comparing the ML-model predictions to the actual simulation results.

You should now be able to play around with the training script to see what happens as you change, for example, the stimulation period or simulation duration.

Speed comparisons with MATLAB

Solution speed is important for complex computational models and here we
compare the performance of OpenCOR with MATLAB1. Nine
representative CellML models were chosen from the PMR model repository.
For the MATLAB tests we used the MATLAB code, generated automatically
from CellML, that is available on the PMR site. These comparisons are
based on using the default solvers (listed below) available in the two
packages.

Testing environment

	MacBook Pro (Retina, Mid 2012).

	Processor: 2.6 GHz Intel Core i7.

	Memory: 16 GB 1600 MHz DDR3.

	Operating system: OS X Yosemite 10.10.3.

OpenCOR [http://www.opencor.ws/]

	Version: 0.4.1.

	Solver: CVODE with its default settings, except for its Maximum step
parameter, which is set to the model’s stimulation duration, if
needed.

MATLAB [http://www.mathworks.com/products/matlab/]

	Version: R2013a.

	Solver: ode15s (i.e. a solver suitable for stiff problems and which
has low to medium order of accuracy) with both its RelTol and
AbsTol parameters set to 1e-7 and its MaxStep parameter set to
the stimulation duration, if needed.

Testing protocol

	Run a model for a given simulation duration.

	Generate simulation data every milliseconds.

	Only keep track of all the simulation data (i.e. no graphical
output).

	Run a model 7 times, discard the 2 slowest runs (to account for
unpredictable slowdowns of the testing machine) and average the
resulting computational times.

	Computational times are obtained directly from OpenCOR and MATLAB
(through a couple of calls to cputime in the case of MATLAB).

Results

	CellML model (from PMR on 18/6/2015)

	Duration (s)

	OpenCOR time (s)

	MATLAB time (s)

	Time ratio
(MATLAB/OpenCOR)

	Bondarenko et al. 2004 [http://models.cellml.org/e/41]

	10

	1.16

	140.14

	121

	Courtemanche et al. 1998 [http://models.cellml.org/exposure/0e03bbe01606be5811691f9d5de10b65]

	100

	0.998

	45.720

	46

	Faber & Rudy 2000 [http://models.cellml.org/exposure/55643f2114a2a463ada007deb9fc3913]

	50

	0.717

	29.010

	40

	Garny et al. 2003 [http://models.cellml.org/exposure/d71105df45dd7030b3c99b2b1e95b8c0]

	100

	0.996

	48.180

	48

	Luo & Rudy 1991 [http://models.cellml.org/exposure/2d2ce7737b42a4f72d6bf8b67f6eb5a2]

	200

	0.666

	70.070

	105

	Noble 1962 [http://models.cellml.org/exposure/812eeafbc8ebe97bef435340c80cfcce]

	1000

	1.42

	310.02

	218

	Noble et al. 1998 [http://models.cellml.org/exposure/a40c4434423c0436e2789a2d457b7ab2]

	100

	0.834

	42.010

	50

	Nygren et al. 1998 [http://models.cellml.org/exposure/ad761ce160f3b4077bbae7a004c229e3]

	100

	0.824

	31.370

	38

	ten Tusscher & Panfilov 2006 [http://models.cellml.org/exposure/a7179d94365ff0c9c0e6eb7c6a787d3d]

	100

	0.969

	59.080

	61

*The value of membrane.stim_end was increased so as to get
action potentials for the duration of the simulation

Conclusions

For this range of tests, OpenCOR is between 38 and 218 times faster than MATLAB.
A more extensive evaluation of these results is available on GitHub2.

Footnotes

	1

	www.mathworks.com/products/matlab [http://www.mathworks.com/products/matlab]

	2

	https://github.com/opencor/speedcomparison. These tests were carried out by Alan Garny.

References

	APJ15

	Garny A. and Hunter P.J. Opencor: a modular and interoperable approach to computational biology. Frontiers in Physiology, 2015.

	AYY

	Non A. Www.biomodels.org <http://www.biomodels.org>. YYYY.

	AAF52

	Hodgkin AL and Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117:500–544, 1952.

	CPJ09

	Christie R. Nielsen P.M.F. Blackett S. Bradley C. and Hunter P.J. Fieldml: concepts and implementation. Philosophical Transactions of the Royal Society (London), A367(1895):1869–1884, 2009.

	CMEJ08

	Hunter PJ Cooling M and Crampin EJ. Modeling biological modularity with cellml. IET Systems Biology, 2:73–79, 2008.

	CJ15

	Waltemath D. Cooper J, Vik JO. A call for virtual experiments: accelerating the scientific process. Progress in Biophysics and Molecular Biolog, 117:99–106, 2015.

	D62

	Noble D. A modification of the hodgkin-huxley equations applicable to purkinje fibre action and pace-maker potentials. Journal of Physiology, 160:317–352, 1962.

	DPPJ03

	Cuellar A.A. Lloyd C.M. Nielsen P.F. Halstead M.D.B. Bullivant D.P. Nickerson D.P. and Hunter P.J. An overview of cellml 1.1, a biological model description language. SIMULATION: Transactions of the Society for Modeling and Simulation, 79(12):740–747, 2003.

	ea13

	Hunter P.J. et al. A vision and strategy for the virtual physiological human: 2012 update. Interface Focus, 2013.

	eal11

	Yu T. et al. The physiome model repository 2. Bioinformatics, 27:743–744, 2011.

	J97

	Wigglesworth J. Energy and life. Taylor & Francis Ltd, 1997.

	JH02

	Thompson JMT and Stewart HB. Nonlinear dynamics and chaos. Wiley, 2002.

	LCPF08

	Hunter PJ Lloyd CM, Lawson JR and Nielsen PF. The cellml model repository. Bioinformatics, 24:2122–2123, 2008.

	P13

	Britten R.D. Christie G.R. Little C. Miller A.K. Bradley C. Wu A. Yu T. Hunter P.J. Nielsen P. Fieldml, a proposed open standard for the physiome project for mathematical model representation. Med. Biol. Eng. Comput., 51(11):1191–1207, 2013.

	PJ04

	Hunter P.J. The iups physiome project: a framework for computational physiology. Progress in Biophysics and Molecular Biology, 85:551–569, 2004.

	VarYY

	Various. See www.cellml.org/about/publications for a more extensive list of publications on cellml and opencor. Various, YYYY.

Index

 _static/images/algebraic.png
A
A,

_static/images/anno_pot_ch_diagram.png
Subject

Predicate

(CellML element)

Object

(BioModels.net qualifier) (Ontological term with identifiers.org URI element)

potassium_channel

isVersionOf

voltage-gated potassium channel complex

\

G0:0008076
Ki isVersionOf potassium(1l+)

CHEBI:29103
Ko isVersionOf potassium(1+)

CHEBI:29103

_static/images/100_dollar_note.jpeg

_static/images/OpenCOR.png
0B

_static/images/balance_forces.png
Intracellular

_static/images/sim_panel_btn_2.png

_static/images/banner_introduction.png
©_©_ AUCKLAND

MedTechéCoRE

VPH Inslilute/glyf

_static/images/sim_panel_btn_4.png

_static/images/sim_panel_btn_3.png

_static/images/sim_panel_btn_6.png

_static/images/sim_panel_btn_5.png

_static/images/sim_panel_btn_8.png

_static/images/sim_panel_btn_7.png

_static/images/sol_first_order_eqn.png
exponential

_static/images/sol_first_order_eqn.gif
Differential

equation
r%2,2_o
dr...C

Vo= vpe~ 'R

0=Cyye "
Vo j-tike
I=2¢
R

_static/images/sim_panel_btn_1.png

_static/images/sideimage_background.png

_static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Tutorial on CellML, OpenCOR & the Physiome Model Repository

 		
 Background to the VPH-Physiome project

 		
 Primary Goals

 		
 Install and Launch OpenCOR

 		
 Dockable Windows

 		
 Plugins

 		
 Create and run a simple CellML model: editing and simulation

 		
 Simulation Panel

 		
 Solvers Panel

 		
 Graphs Panel

 		
 Parameters Panel

 		
 Open an existing CellML file from a local directory or the Physiome Model Repository

 		
 A simple first order ODE

 		
 The Lorenz attractor

 		
 Exercise for the reader

 		
 A model of ion channel gating and current: Introducing CellML units

 		
 A model of the potassium channel: Introducing CellML components and connections

 		
 A model of the sodium channel: Introducing CellML encapsulation and interfaces

 		
 A model of the nerve action potential: Introducing CellML imports

 		
 Cable equation

 		
 Action potentials

 		
 Important note

 		
 A model of the cardiac action potential: Importing units and parameters

 		
 Code generation

 		
 Exporting CellML to code

 		
 Generated code in PMR

 		
 Model annotation

 		
 The Physiome Model Repository and the link to bioinformatics

 		
 Using PMR with OpenCOR

 		
 The PMR Workspaces window

 		
 SED-ML, functional curation and Web Lab

 		
 Using OpenCOR with Python (beta)

 		
 Installation and setup

 		
 Command line usage

 		
 Jupyter notebooks

 		
 Installing packages

 		
 Basic usage

 		
 Interactive example

 		
 OpenCOR, CellML, and TensorFlow

 		
 Getting prepared

 		
 Training a machine learning model

 		
 Speed comparisons with MATLAB

 		
 Testing environment

 		
 OpenCOR

 		
 MATLAB

 		
 Testing protocol

 		
 Results

 		
 Conclusions

 		
 References

_images/balance_forces.png
Intracellular

_images/banner_introduction.png
©_©_ AUCKLAND

MedTechéCoRE

VPH Inslilute/glyf

_images/algebraic.png
A
A,

_images/anno_pot_ch_diagram.png
Subject

Predicate

(CellML element)

Object

(BioModels.net qualifier) (Ontological term with identifiers.org URI element)

potassium_channel

isVersionOf

voltage-gated potassium channel complex

\

G0:0008076
Ki isVersionOf potassium(1l+)

CHEBI:29103
Ko isVersionOf potassium(1+)

CHEBI:29103

_images/cellml_lorenz.png
[BON] OpenCOR

% lorenz.cellml

ar=xp=2-y

def model Lorenz as
def comp main as
var t: dimensionless {init: 0};
var x: dimensionless {init: 1};
var y: dimensionless {init: 1};
var z: dimensionless {init: 1};
var sigma: dimensionless {init: 10};
var rho: dimensionless {init: 28},
var beta: dimensionless {init: 2.66667};

uonelouuy IR

X8l T1NIeD

Simulation

TNIIRD Mey

ode(x, t) = sigma*(y-x);
ode(y, t) = x*(rho-z)-y|;
ode(z, t) = x*y-beta*z;
enddef;
enddef;

mey

Line: 12, Col: 32 IN

_static/images/pmr_workspace_window_commit.png
“# OpenCOR

File View Tools Help
PMR - x
Filter: c

1 [Ca2+]i oscillations in sympathetic | ~
" A model for pacemaking in substar
1 Amodel for pacemaking in substar
" APrimer on Modular Mass Action
A Quantitative Model of Human Je
" Asingle compartment model of pa
" Asingle compartment model of pa
1 ATutorial on Creating a Systems M
" Activation of the Liver Glycogen Ph
. Adrian, Chandler, Hodgkin, 1970

| Aguda, 1999 v
< >
PMR Workspaces ox
B @x

v Test workspace
New - BG Fluids model 3.cellm!
new - kidney.cellml

You are here: Home / Workspaces / Test workspace

Test workspace

Exposure Information
No simplified view available for this workspace as no related exposures

Workspace Summary

Description
Used for tutorial

Oowner
Peter H <p.hunter@auckland.ac.nz>

URI for git clone/pull/push
https://teaching.physiomeproject.org/workspace/462

Files

B New - BG Fluids model 3.cellm!

B new - kidney.cellmi

© 2001-2017 - 1UPS Physiome Project.

_images/close_red_square.png

_static/images/pmr_workspace_window.png
<# OpenCOR

File View Tools Help
PMR o x
Filter: <
" [Ca2+]i oscillations in sympathetic neurons ~
7 AOD model of the Heart
. Amodel for pacemaking in substantia nigr.
" Amodel for pacemaking in substantia nigr.
A Primer on Modular Mass Action Modellir
I AQuantitative Model of Human Jejunal Sn
1 Asingle compartment model of pacemakir
7 Asingle compartment model of pacemakir v

< >

PMR s x
B €

_images/bar.png

_static/images/python-opencor-01.png
“# OpenCOR - O X
File View Tools Help

File Browser g X Help
@ 4 ¢» @ ¢ P QIR]| =
Name " OpenCOR a
N - NG 11 Wi
N | OpenCOR-2019-06-11-Windows OpenCOR is a cross-platform modelling
' opencor-python environment, which is aimed at organising,
> 1 PerflLogs editing, simulating and analysing CellML files
> | Program Files on Windows, Linux and macOS. It can be
> | Program Files (x86) downloaded here.
> 1 Python Various information about OpenCOR and its
v | Users use can be found in the following pages:
> | ADMINI~1
> | Administrator Q = User interfaces
v 2 dnicotg H = Command Line Interface (CLI)
D — v ° = Graphical User Interface (GUI)
< > 3 [Copyright 20112019 L 4 VPR .
File Organiser g x %’ Python Console g X
' % Jupyter QtConsole 4.5.5 ~
o) Python 3.7.4 (default, Sep 20 2019,
S |18:29:34) [MSC v.1916 64 bit (AMD64)]
o T, | Type 'copyright', 'credits’ or
£ £ | 'license’ for more information
8 IPython 7.8.0 -- An enhanced
® Interactive Python. Type '?' for
-§ i help.
= I
E = |In [1]:
(%]
g
- v
S
£ Web Browser g X
=
PMR 8 x \ €
7 = ® O A
Filter:‘ ‘c = <;; d\) = ‘ti < —
=
Models Instance g
| [Ca2+]i oscillations in sympathetic ni A
A 0D model of the Heart
' Amodel for pacemaking in substant
B mndal far naramalina in ciihetant
< >
PMR Workspaces g X
+ NG o
C X S
Models Instance
? Authenticate yourself...
(Click on the top-right button.)

_images/cellml_comp_legend.png
CellML

component

—— math

L variable
connection

—— mapComponent
—— mapVariable

— relationshipRef

——— componentRef
import

— imported units

—— imported component

_static/images/pmr_wsp_thiazide.png
Thiazide-sensitive Na-Cl cotransporter

v 176, Lot "373,‘31';&""‘ e

Model status

rtrr o et h ol et h i e tar re i sl s of o crcrtrotn gt
e o rescion et G) th pver

Model structure

65124 e i s sty wos o conrct it oot thsd- st Mo covarsrar 15C)
o con st ot i b and st raner o TSC. e pateses o o machonrns
e ot e sttty st o e sty o ot wo e ol s
it o oo exarmantl esca:) oo cortant o s 1 besnc of s and o 2)
oy e o s on s ;3 sty o e o i ;) oo st

Model Curation

Source
Geres o worapace s

Collaboration

Downloads
Rs——

& Dowiosa el

Views Available

_static/images/rate.png

_static/images/python-opencor-02.png
“# OpenCOR

File View Tools

Help

O periodic_stimulus.sedml m

Python Console

Cl oLl

®e €

v ODE solver

Simulation
Property Value Unit
Starting point 0 mil...
Ending point 4000 mil...
Point interval 1 mil...
v Solvers
Property Value Unit

Name CVODE

Maximu... 0.1 mil...
Maximu... 500

Integrati... BDF

Iteration... Newton

Linears... Dense

Relative ... 1e-07

Absolut... 1e-07

Interpol... True

Juswiadx3 uonenwiIs

v Graphs =
Property Value
stimulus_protocol.time | ou...
=3
5
%
o
<
2
5
S
£
(%]
Parameters
Property Value Unit
v outputs
(S} -88.0248866815... mil..

Q V' 79.9998441731... mil...
v stimulus_protocol

@ amp -80 mi...
@ dur.. 05 mil...
0 istim -80 mi...
@ peri.. 800 mil...
@ stim... 50 mil...
@time 0 mil...

Simulation time:
Simulation time:
Simulation time:
Simulation time:

: 1s 124ms using CVODE.

: 484ms using CVODE.
: 351ms using CVODE.
: 434ms using CVODE.

ANN - It 1763 - Loss:
ANN - It 1764 - Loss:
ANN - It 1765 - Loss:
ANN - It 1766 - Loss:
ANN - It 1767 - Loss:
ANN - It 1768 - Loss:
ANN - It 1769 - Loss:
ANN - It 1770 - Loss:
ANN - It 1771 - Loss:
ANN - It 1772 - Loss:
ANN - It 1773 - Loss:
ANN - It 1774 - Loss:
ANN - It 1775 - Loss:
ANN - It 1776 - Loss:
ANN - It 1777 - Loss:
ANN - It 1778 - Loss:
ANN - It 1779 - Loss:
ANN - It 1780 - Loss:
ANN - It 1781 - Loss:
ANN - It 1782 - Loss:
ANN - It 1783 - Loss:
ANN - It 1784 - Loss:
ANN - It 1785 - Loss:
ANN - It 1786 - Loss:
ANN - It 1787 - Loss:
ANN - It 1788 - Loss:
ANN - It 1789 - Loss:
ANN - It 1790 - Loss:
ANN - It 1791 - Loss:
ANN - It 1792 - Loss:
ANN - It 1793 - Loss:
ANN - It 1794 - Loss:
ANN - It 1795 - Loss:
ANN - It 1796 - Loss:
ANN - It 1797 - Loss:
ANN - It 1798 - Loss:
ANN - It 1799 - Loss:
ANN - It 1800 - Loss:
ANN - It 1801 - Loss:
Prediction L2-error :

.482294e+03
.481439e+03
.479744e+03
.476944e+03
.472261e+03
.467517e+03
.467746e+03
.463733e+03
.456031e+03
.452847e+03
.461440e+03
.449864e+03
.458102e+03
.444952e+03
.443821e+03
.442174e+03
.440954e+03
.440184e+03
.439002e+03
.437505e+03
.433999e+03
.430774e+03
.708955e+04
.430807e+03
.430784e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
0.20609238898677085

NNOMNNRONNMNNRNONNONNMNNRNONNONNRNNNNENNNNNNRNNONNMNNNNNONNRNNONNMNNONNNNNDNDNN

60 4
a0
20 4

0 -
— Simulation
—20 = MNetwork prediction
® Training data

—a0 4
—&0 4
—ao
—100 4

In [22]:

T T T T T T T T
o 500 1000 1500 2000 2500 3000 3500 4000

t

_images/computedConstant.png

_static/images/sedml_export.png
[BON] OpenCOR
x Noble_1962.cellml
b . ~ Simulation 20 ,.
Property Value Unit 23 ‘
Starting point 0 ms 03
Ending point 5000 ms 'gg
Point interval 1 ms T — I —— ____ ______ _— __ _____—— _ ______ _—____
0 1,000 2,000 - 3,000 4,000 5,000
» Solvers
v Graphs 0= =
-100 3
Property Value e
> v membrane.t | membrane.n -300
-400
i . i . . . i i i ,
0 1,000 2,000 - 3,000 4,000 5,000
12 g
8
6 . H
I | |
o 0 _J -
£ = ; = ‘ = —— = = = = — ‘
5 0 1,000 2,000 - 3,000 4,000 o
130 =]
(]
5 0.8 3
= 0.6 o)
i 045 3
£ Parameters o.g .
r Property Value Unit [T 1
On 0.33028456... dimensionless . =000 4000) 5000
on -0.0368006... dimensionless/ms 15
®iK 29.1197573... microA gg ,
®iL 0.20512046... microA 043
@ i Na -58.301128... microA 023
OK 140 mM
O ko 2.5 mM 0 1,000 2,000 R 3,000 4.000 5,000
Om 0.15251850... dimensionless e :
onm 0.01707786... dimensionless/ms g-g '
On 0.36814982... dimensionless 044
o -5.9164296... dimensionless/ms P
O Nai 30 mM o
o Nao 140 mM T]
- n me 0 1,000 _ 2,000 3,000 4,000 5,000
/Users/dnic019/pmr2/opencor-pmr-tutorial/Noble_1962.cellml
Runtime: valid.
Model type: ODE.
Simulation time: 0.004 s using CVODE.

_static/images/render_eqn_and_save.png
T W:r,!‘v =
Tar T Ghnensomtes fin:

Var 5 dinensiontess (1art:

(b)

_static/images/pmr_website_exp_hund_rudy.png
Search Site

You are here: Home / Exposures / Hund, Rudy, 2004 / Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model (Basic Model)

Rate dependence and regulation of action potential and calcium
transient in a canine cardiac ventricular cell model (Basic Model)

Rate dependence and regulation of action potential and calcium transient in a canine cardiac
ventricular cell model

Model Status

This CellML version of the model has been checked in COR and OpenCell. A stimulus protocol has been added to allow the
model to simulate action potentials for 5 seconds. The units are consistent and the model runs to recreate the published
results. The parameter 'tissue' has been added to switch between the original (default value 0) and 'tissue' (any other value,
for example 1) models.

Model Structure

ABSTRACT: BACKGROUND: Computational biology is a powerful tool for elucidating arrhythmogenic mechanisms at the
cellular level, where complex interactions between ionic processes determine behavior. A novel theoretical model of the
canine ventricular epicardial action potential and calcium cycling was developed and used to investigate ionic mechanisms
underlying Ca2+ transient (CaT) and action potential duration (APD) rate dependence. METHODS AND RESULTS: The
Ca2+/calmodulin-dependent protein kinase (CaMKII) regulatory pathway was integrated into the model, which included a
novel Ca2+-release formulation, Ca2+ subspace, dynamic chloride handling, and formulations for major ion currents based
on canine ventricular data. Decreasing pacing cycle length from 8000 to 300 ms shortened APD primarily because of I(Ca(L))
reduction, with additional contributions from I(to1), I(NaK), and late I(Na). CaT amplitude increased as cycle length
decreased from 8000 to 500 ms. This positive rate-dependent property depended on CaMKII activity. CONCLUSIONS: CaMKII
is an important determinant of the rate dependence of CaT but not of APD, which depends on ion-channel kinetics. The model
of CaMKII regulation may serve as a paradigm for modeling effects of other regulatory pathways on cell function.

Source

Derived from workspace Hund, Rudy,
2004 at changeset 5a88399b1151.

Collaboration

To begin collaborating on this work,
please use your git client and issue this
command:

git clone https://models.physiol

Downloads
& Download This File

& Complete Archive as .tgz

Views Available

Documentation
Model Metadata
Model Curation
Mathematics
Generated Code

Cite this model

_static/images/pmr_teaching_login.png
ILM
Physiome Repository Navigation
Main model listing Physiome Rapostory

_static/images/pmr_window.png
Physiome Model Repository o

m-i@

= Chang, Fujta, 2001 2
= Chassagnole, Rais, Quentin, Fell,
Mazat, 2001 an
= Chay, 1997 O
= Chay, Lee, Fan, 1995 =2

= Chen, Caizone, Csikasz-Nagy, Cross. [(@1
Novak, Tyson, 2004

= Chen, Csikasz-Nagy, Gyorfy, Val,
Novak, Tyson, 2000

= Chen, Popel, 2006 3\.]

= Chen, Popel, 2007

o chen_popel_2007_c.cellml
o chen_popel_2007_b cellml } 2

= Cheng, Brown, Loeb, 2000 E2
= Ciliberto, Novak, Tyson, 2003 L
= Ciliberto, Petrus, Tyson, Sible, 2003 BN/ |88
= Ciliberto, Tyson, 2000 E2

Physome Model Repository | Fle Organiser |

_images/constant.png

_images/crotchet.jpeg

_images/current_voltage_relations.png

-

__IK1

30mV

30mV —

Plateau

\)

-100mV ~

_images/current_voltage_trajectory.png
A
(V) for open K channel
," . . I(V) for open Na channel
4 1(V) during repolarisation \I

K
Q N P

Injection of outward current pulse
pushes V to a threshold where Na channels
open to allow a large inward (-ve) current

& (V) during upstroke
of action potential
(depolorisation)

_images/current_flow_leaky_cable.png

_images/current_flow_neuron.png

_images/fc_schematic.png
- —How things are now -, - - - - - A more useful system?- - - — — - .

Model Model
repository Model repository ontology annot:
Model
Mode! Library of
Gloce! generic
protocol
components

Protocol
repository

Simulatol

_images/first_order_plots.png
(b)

(a)

_images/distribution_microstates.png

_images/exponential_curve.png
PN

_images/hh_opencor_tabs.png

_images/hh_results_opencor.png
Ble_Yen Joos Hep

vtceint £ | soduan_on_channel.cobi™ () | potassum_jon_chanmelcobnd () | leakage_jon_charnelcelel |

OO CH | -
5 S

propery
Stating point

Ending point
Point terel

Value
o

15
o

e
millsec
millsec
millsec

oot |

_images/graphical_output.png
“# OpenCOR o=

Ele View Tooks Help

D apus

‘vanderpol.celml [
O@®CB I ummN =~
2 Smiaton 23
P N
ey 13
Stating point 0
Ending point 100 04 xX(H)
Point interval 01
Fll | FE
» Solvers. V
2 “Graphs -2
ey e || = & & &
‘mainx | main.y
g n
i rethbbid
20 40 60 80
)
T : T r
i v 5 A N i
D:\Users\phun025\Documents\CMISS\OpenCOR\Models\Tutorial models \vanderpol.celiml
‘Runtime: vad.
Hodel type: O0E.

‘Simulation time: 0,002 5 using CVODE.

_images/interfaces_between_cellml_components.png
Siblings communicate
via public interface

public interface

environment

public interface
out:i_Na in: V, t

sodium_channel

private interface

Nieces, nephews, and cousins

do not directly communicate

Parents communicate

public interface

out: h in:V, t

h_gate

with children via
their private interface

Children communicate
with parents via
their public interface

public interface

out:m in:V, t

m_gate

_images/ion_ch_gating.png

_images/hodgkin_1952.png

_static/images/state.png

_images/hund_2004.png

_static/images/ss_cur_volt.png

_images/open_ch_linear_iv.png

_static/images/variableNode.png

_static/images/transient_beh_gates.png

_images/kinetics_na_ch_votages.png
(@) V() PE ﬁfzov

"ove i [

ht) ENEPEE

gnal(t) E
iNa(t) §§ b/m ==

_static/images/volt_deps_of_gate_consts.png

_images/kinetics_of_potassium_ch.png
O® €0 lumm
v ‘Smulation’
Property Value 20

Starting point 0

Ending point 40

Pointintenal 01
< 0 »

>

4 potassium_channel_n_gat¢ |5/000

@aphen 0 | 1500 ix(t
@vean 0 |[1,000 K()
03zs|| 500
0 o

_static/images/voi.png
Y,

\ WV

_static/images/soln_lorenz.png
(CRCKC) OpenCOR

% lorenz.cellml
®® ¢ 8 o P =y o &
v Simulation 20 5
Property Value Unit 15 =
Starting point 0 dimensionless E
Ending point 50 dimensionless 0
Point interval 0.001 dimensionless 5 3
b Solvers 03 :
» Graphs -5 o :
Parameters 3
; -10 3 !
Property Value Unit 3 X(t)
v main -15 o '
© beta 2.66667 dimensionless [w w w ‘ ‘ ‘ ‘ ‘ ; ‘ ; ; ; ; ‘ ; ; ; ‘ ‘ ‘ ‘ ‘ ‘ ‘
© rho 28 dimensionless 0 10 20 N 30 40 50
© sigma 10 dimensionless]
Ot 0 dimensionless B
) : 20
[o % 1 dimensionless ;
> o~ 0 dimensionless/d]
£ Oy 1 dimensionless | | °]
5 oy 26 dimensionless/d a o
O: 1 dimensionless " © 7 &
= oz -1.66667 dimensionless/d B o
3 -10 - o
o 4 =
2]
& 20
40
30
20
10
0
-_—
— -15 -10 5 0 5 10 15 20
Runtime: valid.
Model type: ODE.
Simulation time: 0.013 s using CVODE.
Simulation time: 0.014 s using CVODE.

_images/opencor_anno_view.png
Edting

Simulation

» @ Units

4 @ potassium_channel
4 @ Variables
ov
X

? Enter a term above...

There s no metadata
€D assocated with the current
CelML element...

_images/opencor_four_gate_ion_channel.png
“# OpenCOR

[ile | View Tools Help

Simdation | Edting |

SmpeFestOrdertan.cem £
[CION-N NNE T " TX X 5
2 Smiaton
Property Value Unit
Sutingpomt 0 milisecond Wt
Ending point 5 millisecond
Point interval 01 millisecond
Pl P —— »
» Solvers.
» Graphs.
Paremeters
Property Value Unit . . . 4 4
4 y_channel 1 2 3 4 5)
Qalphay 1 permillisecond
Oubetay 2 permillisecond n
Ocy 85 millvolt iy(t)
Qv 36 milliS_per_cm2
O gomma & dimensionless
iy 0 microA_per_cm2
8; 0 mitsecond Note S-shaped iy(1) curve
Oy 0 dimensionless &— resulting from 4 gates in series
oy 0 dimensionless/milizecond : : : - :
Ll n » 1 2 3 a 5|

P2 apus

_images/opencor_01.png

_images/opencor_02.png
0 7 Plugins

+ BioSignalMLDataStore Description: plugins to store and manipulate data.
+ CSVDataStore
Editing
+ CellMLAnnotationView
+ CellMLTextView
% RawCellMLView
% RawSEDMLView
+ RawTextView
Miscellaneous
+ HelpWindow
Organisation
+ FileBrowserWindow
+ FileOrganiserWindow
% PhysiomeModelRepositoryWindow
Simulation
+ SingleCellView
Solver
CVODESolver
ForwardEulerSolver
FourthOrderRungeKuttaSolver

(CJH QN J<J<]
LSE S S SN S S8 8

HeunSolver
IDASolver
KINSOLSolver
SecondOrderRungeKuttaSolver
Tool
+ CellMLTools

Show only selectable plugins
Note: OpenCOR will need to be restarted for your changes to take effect.

Apply Cancel OK

_images/opencor_qual_res_info.png
e v o sor
)

g

o 8 oot | 1o,

- @ e otag- et passam chann compox R —

Quaitier Resource P =]
o = D —

Comoto that formsa transmembran chaml hrouh wich ptaslom o maycross
.E':"'—_-_-a..n..——
W

enaes ‘-3 e
eraas 3 parcf rastansio
s postry cphoes e
Bt e repdoes el

_images/opencor_qualifiers.png
T - &
2o " e R, NNELTLNE.,. T ™A -

File View Tools Help
potassium_jon_channel.celm 3

@ potasiom fon_channel
> @ Units
4 @ Components
4 @ environment
+ @ Varisbles

Edting

Simulation

4 B potassium_channel_n_gate
@ Varabies
'Y

o There is no metadata assodiated with the current CelML element...

oerouy WD

bio:isVersionOf -

- Qualifier P

WL WPD

Model Element ————— | Annotation

Represents Represents

WD My

Relationship

ey

(Biological Entity A | (Biological Entity B

Hypernym

‘The biological entity represented by the model element s a version or an instance of the subject of the
referenced resource ("Biological Entity B"). This relation may be used to represent, for example, the 'superclass”
or ‘parent form of a particular biological entity. -

_images/opencor_ont_listing.png
large condutance calciu-actated potasshum chanoel actity
opn ecer potassum channlactty
outward e potassum chanel acvty
potassiom channel actity.
potasiom chamnel bocker
potsssum chanmelcomplex
prassium chame itor actty
peassium chamel moduistor
potsssium channel euistor sty
‘small conductance cacum acthated potassium chaml actty
otage-gated potassum chanmelsctty
ltage gated potasiom chamnelcompex f———

®
®
®
®

i
®
®

-
®
®
®
®

Gouenn2
o052
coarsan
G0 aonezs?
cHEB: 50609
oS
coaneno
cHEBts0s1D
Goantstss
Y
oS
500008076

A

(@ v o et st v he e . skmer..

_images/opencor_output_noble62.png
é [r/ \iNJ(t) T/:Tﬁ

‘ t _L P o)
uﬁ;“ﬁMf

:. \/\/\\/\ /\/\\

IBIEIBETBNBLS
AR

_images/overall_structure_hh.png
HH.cellml

Imports &

Environment
A
Mappingﬂ
Vvt
{pub: out}
‘ {pub: In})

v

<&

Membrane

Encapsulate

Na
channel

K
channel

L
channel

Imp

Imp

e Rt o B o R

sodium_ion_channel.cellml

Sodium
channel

m: {priv: in} & {pub: out}

>
4

V, t: {priv: out} & {pub: in}

" h: {priv: in} & {pub: out}

channel

1

1

1

]

1

!)
i Potassium
(]

]

1

1

]

1

1

n: {priv: in} & {pub: out}

d

‘V, t: {priv: out} & {pub: in}

P

1

1

i

i Leakage
il channel
!

]

1

_static/images/current_flow_neuron.png

_images/overall_structure_noble62.png
Noble 1962.cellml

[
! |
! I
! |
i |Environment Imports I Noble62_units.cellml
I I
[
! A t

|
I | Mappings :
I V.t :
1 {pub: out} i
: {pub: In} :
| A 4 !

I
: | =
I : i m: {priv: in} & {pub: out} _ H
I . H - — ——] m gate |1
! h 9 | Import i F? |um| V.t {priv: out} & {pub in} |
: channe P | channe . g = I o i
1 : E " h: {priv: in} & {pub: out} '
| 1! !
I I B o o ——————— -
: Encapsulate | Noble62 K _channel.cellml
| ool
| | i
1 K : i P) n: {priv: in} & {pub: out} : !
'l Membrane I otassium |« | n_gate |
I Import i YT - .
: channel p | : channel V, t: {priv: out} & {pub: in} i

1
I | E
| | : 1
: | e e ——_—_————— 1
I I Noble62_L channel.cellml
I [
I | :
: | | :
1

I L 1| Leakage]
I Import i !
: channel P : 'l channel E
I I E i
| 1 1 1
: | e e i
| I

_static/images/current_voltage_trajectory.png
A
(V) for open K channel
," . . I(V) for open Na channel
4 1(V) during repolarisation \I

K
Q N P

Injection of outward current pulse
pushes V to a threshold where Na channels
open to allow a large inward (-ve) current

& (V) during upstroke
of action potential
(depolorisation)

_static/images/current_voltage_relations.png

-

__IK1

30mV

30mV —

Plateau

\)

-100mV ~

_static/images/exponential_curve.png
PN

_static/images/distribution_microstates.png

_static/images/close_red_square.png

_static/images/cellml_website_pmr.png
Physiome Model Repository

‘The Physiome Model Repository is an open source software suite that ntegrates Mercurial
with Plone to provide a facilty to store and manage models.

Introduction

The iy Mods! Raposton (PUS) vas
< ompite e

e Mol Reportan 2 (W2

ke R, B e Btk upon e, an Spen s Contant Mansgarment Syter (SHS), wih ntagated

Navigation

_static/images/constant.png

_static/images/computedConstant.png

_static/images/current_flow_leaky_cable.png

_static/images/crotchet.jpeg

_images/pmr_workspace_window.png
<# OpenCOR

File View Tools Help
PMR o x
Filter: <
" [Ca2+]i oscillations in sympathetic neurons ~
7 AOD model of the Heart
. Amodel for pacemaking in substantia nigr.
" Amodel for pacemaking in substantia nigr.
A Primer on Modular Mass Action Modellir
I AQuantitative Model of Human Jejunal Sn
1 Asingle compartment model of pacemakir
7 Asingle compartment model of pacemakir v

< >

PMR s x
B €

_images/pmr_workspace_window_commit.png
“# OpenCOR

File View Tools Help
PMR - x
Filter: c

1 [Ca2+]i oscillations in sympathetic | ~
" A model for pacemaking in substar
1 Amodel for pacemaking in substar
" APrimer on Modular Mass Action
A Quantitative Model of Human Je
" Asingle compartment model of pa
" Asingle compartment model of pa
1 ATutorial on Creating a Systems M
" Activation of the Liver Glycogen Ph
. Adrian, Chandler, Hodgkin, 1970

| Aguda, 1999 v
< >
PMR Workspaces ox
B @x

v Test workspace
New - BG Fluids model 3.cellm!
new - kidney.cellml

You are here: Home / Workspaces / Test workspace

Test workspace

Exposure Information
No simplified view available for this workspace as no related exposures

Workspace Summary

Description
Used for tutorial

Oowner
Peter H <p.hunter@auckland.ac.nz>

URI for git clone/pull/push
https://teaching.physiomeproject.org/workspace/462

Files

B New - BG Fluids model 3.cellm!

B new - kidney.cellmi

© 2001-2017 - 1UPS Physiome Project.

_images/pmr_website_exp_hund_rudy.png
Search Site

You are here: Home / Exposures / Hund, Rudy, 2004 / Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model (Basic Model)

Rate dependence and regulation of action potential and calcium
transient in a canine cardiac ventricular cell model (Basic Model)

Rate dependence and regulation of action potential and calcium transient in a canine cardiac
ventricular cell model

Model Status

This CellML version of the model has been checked in COR and OpenCell. A stimulus protocol has been added to allow the
model to simulate action potentials for 5 seconds. The units are consistent and the model runs to recreate the published
results. The parameter 'tissue' has been added to switch between the original (default value 0) and 'tissue' (any other value,
for example 1) models.

Model Structure

ABSTRACT: BACKGROUND: Computational biology is a powerful tool for elucidating arrhythmogenic mechanisms at the
cellular level, where complex interactions between ionic processes determine behavior. A novel theoretical model of the
canine ventricular epicardial action potential and calcium cycling was developed and used to investigate ionic mechanisms
underlying Ca2+ transient (CaT) and action potential duration (APD) rate dependence. METHODS AND RESULTS: The
Ca2+/calmodulin-dependent protein kinase (CaMKII) regulatory pathway was integrated into the model, which included a
novel Ca2+-release formulation, Ca2+ subspace, dynamic chloride handling, and formulations for major ion currents based
on canine ventricular data. Decreasing pacing cycle length from 8000 to 300 ms shortened APD primarily because of I(Ca(L))
reduction, with additional contributions from I(to1), I(NaK), and late I(Na). CaT amplitude increased as cycle length
decreased from 8000 to 500 ms. This positive rate-dependent property depended on CaMKII activity. CONCLUSIONS: CaMKII
is an important determinant of the rate dependence of CaT but not of APD, which depends on ion-channel kinetics. The model
of CaMKII regulation may serve as a paradigm for modeling effects of other regulatory pathways on cell function.

Source

Derived from workspace Hund, Rudy,
2004 at changeset 5a88399b1151.

Collaboration

To begin collaborating on this work,
please use your git client and issue this
command:

git clone https://models.physiol

Downloads
& Download This File

& Complete Archive as .tgz

Views Available

Documentation
Model Metadata
Model Curation
Mathematics
Generated Code

Cite this model

_images/pmr_window.png
Physiome Model Repository o

m-i@

= Chang, Fujta, 2001 2
= Chassagnole, Rais, Quentin, Fell,
Mazat, 2001 an
= Chay, 1997 O
= Chay, Lee, Fan, 1995 =2

= Chen, Caizone, Csikasz-Nagy, Cross. [(@1
Novak, Tyson, 2004

= Chen, Csikasz-Nagy, Gyorfy, Val,
Novak, Tyson, 2000

= Chen, Popel, 2006 3\.]

= Chen, Popel, 2007

o chen_popel_2007_c.cellml
o chen_popel_2007_b cellml } 2

= Cheng, Brown, Loeb, 2000 E2
= Ciliberto, Novak, Tyson, 2003 L
= Ciliberto, Petrus, Tyson, Sible, 2003 BN/ |88
= Ciliberto, Tyson, 2000 E2

Physome Model Repository | Fle Organiser |

_images/python-opencor-02.png
“# OpenCOR

File View Tools

Help

O periodic_stimulus.sedml m

Python Console

Cl oLl

®e €

v ODE solver

Simulation
Property Value Unit
Starting point 0 mil...
Ending point 4000 mil...
Point interval 1 mil...
v Solvers
Property Value Unit

Name CVODE

Maximu... 0.1 mil...
Maximu... 500

Integrati... BDF

Iteration... Newton

Linears... Dense

Relative ... 1e-07

Absolut... 1e-07

Interpol... True

Juswiadx3 uonenwiIs

v Graphs =
Property Value
stimulus_protocol.time | ou...
=3
5
%
o
<
2
5
S
£
(%]
Parameters
Property Value Unit
v outputs
(S} -88.0248866815... mil..

Q V' 79.9998441731... mil...
v stimulus_protocol

@ amp -80 mi...
@ dur.. 05 mil...
0 istim -80 mi...
@ peri.. 800 mil...
@ stim... 50 mil...
@time 0 mil...

Simulation time:
Simulation time:
Simulation time:
Simulation time:

: 1s 124ms using CVODE.

: 484ms using CVODE.
: 351ms using CVODE.
: 434ms using CVODE.

ANN - It 1763 - Loss:
ANN - It 1764 - Loss:
ANN - It 1765 - Loss:
ANN - It 1766 - Loss:
ANN - It 1767 - Loss:
ANN - It 1768 - Loss:
ANN - It 1769 - Loss:
ANN - It 1770 - Loss:
ANN - It 1771 - Loss:
ANN - It 1772 - Loss:
ANN - It 1773 - Loss:
ANN - It 1774 - Loss:
ANN - It 1775 - Loss:
ANN - It 1776 - Loss:
ANN - It 1777 - Loss:
ANN - It 1778 - Loss:
ANN - It 1779 - Loss:
ANN - It 1780 - Loss:
ANN - It 1781 - Loss:
ANN - It 1782 - Loss:
ANN - It 1783 - Loss:
ANN - It 1784 - Loss:
ANN - It 1785 - Loss:
ANN - It 1786 - Loss:
ANN - It 1787 - Loss:
ANN - It 1788 - Loss:
ANN - It 1789 - Loss:
ANN - It 1790 - Loss:
ANN - It 1791 - Loss:
ANN - It 1792 - Loss:
ANN - It 1793 - Loss:
ANN - It 1794 - Loss:
ANN - It 1795 - Loss:
ANN - It 1796 - Loss:
ANN - It 1797 - Loss:
ANN - It 1798 - Loss:
ANN - It 1799 - Loss:
ANN - It 1800 - Loss:
ANN - It 1801 - Loss:
Prediction L2-error :

.482294e+03
.481439e+03
.479744e+03
.476944e+03
.472261e+03
.467517e+03
.467746e+03
.463733e+03
.456031e+03
.452847e+03
.461440e+03
.449864e+03
.458102e+03
.444952e+03
.443821e+03
.442174e+03
.440954e+03
.440184e+03
.439002e+03
.437505e+03
.433999e+03
.430774e+03
.708955e+04
.430807e+03
.430784e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
.430774e+03
0.20609238898677085

NNOMNNRONNMNNRNONNONNMNNRNONNONNRNNNNENNNNNNRNNONNMNNNNNONNRNNONNMNNONNNNNDNDNN

60 4
a0
20 4

0 -
— Simulation
—20 = MNetwork prediction
® Training data

—a0 4
—&0 4
—ao
—100 4

In [22]:

T T T T T T T T
o 500 1000 1500 2000 2500 3000 3500 4000

t

_images/rate.png

_images/pmr_wsp_thiazide.png
Thiazide-sensitive Na-Cl cotransporter

v 176, Lot "373,‘31';&""‘ e

Model status

rtrr o et h ol et h i e tar re i sl s of o crcrtrotn gt
e o rescion et G) th pver

Model structure

65124 e i s sty wos o conrct it oot thsd- st Mo covarsrar 15C)
o con st ot i b and st raner o TSC. e pateses o o machonrns
e ot e sttty st o e sty o ot wo e ol s
it o oo exarmantl esca:) oo cortant o s 1 besnc of s and o 2)
oy e o s on s ;3 sty o e o i ;) oo st

Model Curation

Source
Geres o worapace s

Collaboration

Downloads
Rs——

& Dowiosa el

Views Available

_images/python-opencor-01.png
“# OpenCOR - O X
File View Tools Help

File Browser g X Help
@ 4 ¢» @ ¢ P QIR]| =
Name " OpenCOR a
N - NG 11 Wi
N | OpenCOR-2019-06-11-Windows OpenCOR is a cross-platform modelling
' opencor-python environment, which is aimed at organising,
> 1 PerflLogs editing, simulating and analysing CellML files
> | Program Files on Windows, Linux and macOS. It can be
> | Program Files (x86) downloaded here.
> 1 Python Various information about OpenCOR and its
v | Users use can be found in the following pages:
> | ADMINI~1
> | Administrator Q = User interfaces
v 2 dnicotg H = Command Line Interface (CLI)
D — v ° = Graphical User Interface (GUI)
< > 3 [Copyright 20112019 L 4 VPR .
File Organiser g x %’ Python Console g X
' % Jupyter QtConsole 4.5.5 ~
o) Python 3.7.4 (default, Sep 20 2019,
S |18:29:34) [MSC v.1916 64 bit (AMD64)]
o T, | Type 'copyright', 'credits’ or
£ £ | 'license’ for more information
8 IPython 7.8.0 -- An enhanced
® Interactive Python. Type '?' for
-§ i help.
= I
E = |In [1]:
(%]
g
- v
S
£ Web Browser g X
=
PMR 8 x \ €
7 = ® O A
Filter:‘ ‘c = <;; d\) = ‘ti < —
=
Models Instance g
| [Ca2+]i oscillations in sympathetic ni A
A 0D model of the Heart
' Amodel for pacemaking in substant
B mndal far naramalina in ciihetant
< >
PMR Workspaces g X
+ NG o
C X S
Models Instance
? Authenticate yourself...
(Click on the top-right button.)

_images/render_eqn_and_save.png
T W:r,!‘v =
Tar T Ghnensomtes fin:

Var 5 dinensiontess (1art:

(b)

_static/images/cellml_comp_legend.png
CellML

component

—— math

L variable
connection

—— mapComponent
—— mapVariable

— relationshipRef

——— componentRef
import

— imported units

—— imported component

_static/images/bar.png

_static/images/cellml_website_mainpage.png
The CellML project
e ol aouso s 4 o santd s o h ot ks

engusce.CaIML 1 bin devloped by the Auchand Soenincering
Instate s he Univars ity f Aveidnd 3o silsed researc

e o i e sl st s anah
deviopment aexd more. -

About CeliML Getting started

Findout shout the CollL Newto elML2 Thissection
argasgerwha i con b sed for, <oltes ormato shouk ClML

Tools and APT Model repository

commicad o prowdng ey whre madelrs can collaberate
Svaabe tols o craping, adiing, i ach oths o bld and share
nd s CHIML madal modal it th est o he ot
Specifications Community

th International CellHL
Workshop

Th 3t ntenat
Worksho b hid o1 he 138
54 Aord 2015 n Aveind, New

WARMONY 2015

HARMONY is s hackathom e
gty s e

rom Mondey August 15 Féey

*

00 Iermatons CaML wrkshon
[R———

Funding agencies.

Foundaton for Research,Sciance
end Techmelooy, Maurice wikins
e o s Eriery,

_static/images/cellml_lorenz.png
[BON] OpenCOR

% lorenz.cellml

ar=xp=2-y

def model Lorenz as
def comp main as
var t: dimensionless {init: 0};
var x: dimensionless {init: 1};
var y: dimensionless {init: 1};
var z: dimensionless {init: 1};
var sigma: dimensionless {init: 10};
var rho: dimensionless {init: 28},
var beta: dimensionless {init: 2.66667};

uonelouuy IR

X8l T1NIeD

Simulation

TNIIRD Mey

ode(x, t) = sigma*(y-x);
ode(y, t) = x*(rho-z)-y|;
ode(z, t) = x*y-beta*z;
enddef;
enddef;

mey

Line: 12, Col: 32 IN

_images/pmr_teaching_login.png
ILM
Physiome Repository Navigation
Main model listing Physiome Rapostory

_images/sim_panel_btn_3.png

_images/sim_panel_btn_4.png

_images/sim_panel_btn_1.png

_images/sim_panel_btn_2.png

_images/sim_panel_btn_7.png

_images/sim_panel_btn_8.png

_images/sim_panel_btn_5.png

_images/sim_panel_btn_6.png

_static/images/opencor_four_gate_ion_channel.png
“# OpenCOR

[ile | View Tools Help

Simdation | Edting |

SmpeFestOrdertan.cem £
[CION-N NNE T " TX X 5
2 Smiaton
Property Value Unit
Sutingpomt 0 milisecond Wt
Ending point 5 millisecond
Point interval 01 millisecond
Pl P —— »
» Solvers.
» Graphs.
Paremeters
Property Value Unit . . . 4 4
4 y_channel 1 2 3 4 5)
Qalphay 1 permillisecond
Oubetay 2 permillisecond n
Ocy 85 millvolt iy(t)
Qv 36 milliS_per_cm2
O gomma & dimensionless
iy 0 microA_per_cm2
8; 0 mitsecond Note S-shaped iy(1) curve
Oy 0 dimensionless &— resulting from 4 gates in series
oy 0 dimensionless/milizecond : : : - :
Ll n » 1 2 3 a 5|

P2 apus

_static/images/opencor_output_noble62.png
é [r/ \iNJ(t) T/:Tﬁ

‘ t _L P o)
uﬁ;“ﬁMf

:. \/\/\\/\ /\/\\

IBIEIBETBNBLS
AR

_static/images/opencor_ont_listing.png
large condutance calciu-actated potasshum chanoel actity
opn ecer potassum channlactty
outward e potassum chanel acvty
potassiom channel actity.
potasiom chamnel bocker
potsssum chanmelcomplex
prassium chame itor actty
peassium chamel moduistor
potsssium channel euistor sty
‘small conductance cacum acthated potassium chaml actty
otage-gated potassum chanmelsctty
ltage gated potasiom chamnelcompex f———

®
®
®
®

i
®
®

-
®
®
®
®

Gouenn2
o052
coarsan
G0 aonezs?
cHEB: 50609
oS
coaneno
cHEBts0s1D
Goantstss
Y
oS
500008076

A

(@ v o et st v he e . skmer..

_static/images/opencor_qualifiers.png
T - &
2o " e R, NNELTLNE.,. T ™A -

File View Tools Help
potassium_jon_channel.celm 3

@ potasiom fon_channel
> @ Units
4 @ Components
4 @ environment
+ @ Varisbles

Edting

Simulation

4 B potassium_channel_n_gate
@ Varabies
'Y

o There is no metadata assodiated with the current CelML element...

oerouy WD

bio:isVersionOf -

- Qualifier P

WL WPD

Model Element ————— | Annotation

Represents Represents

WD My

Relationship

ey

(Biological Entity A | (Biological Entity B

Hypernym

‘The biological entity represented by the model element s a version or an instance of the subject of the
referenced resource ("Biological Entity B"). This relation may be used to represent, for example, the 'superclass”
or ‘parent form of a particular biological entity. -

_static/images/opencor_qual_res_info.png
e v o sor
)

g

o 8 oot | 1o,

- @ e otag- et passam chann compox R —

Quaitier Resource P =]
o = D —

Comoto that formsa transmembran chaml hrouh wich ptaslom o maycross
.E':"'—_-_-a..n..——
W

enaes ‘-3 e
eraas 3 parcf rastansio
s postry cphoes e
Bt e repdoes el

_static/images/overall_structure_noble62.png
Noble 1962.cellml

[
! |
! I
! |
i |Environment Imports I Noble62_units.cellml
I I
[
! A t

|
I | Mappings :
I V.t :
1 {pub: out} i
: {pub: In} :
| A 4 !

I
: | =
I : i m: {priv: in} & {pub: out} _ H
I . H - — ——] m gate |1
! h 9 | Import i F? |um| V.t {priv: out} & {pub in} |
: channe P | channe . g = I o i
1 : E " h: {priv: in} & {pub: out} '
| 1! !
I I B o o ——————— -
: Encapsulate | Noble62 K _channel.cellml
| ool
| | i
1 K : i P) n: {priv: in} & {pub: out} : !
'l Membrane I otassium |« | n_gate |
I Import i YT - .
: channel p | : channel V, t: {priv: out} & {pub: in} i

1
I | E
| | : 1
: | e e ——_—_————— 1
I I Noble62_L channel.cellml
I [
I | :
: | | :
1

I L 1| Leakage]
I Import i !
: channel P : 'l channel E
I I E i
| 1 1 1
: | e e i
| I

_static/images/overall_structure_hh.png
HH.cellml

Imports &

Environment
A
Mappingﬂ
Vvt
{pub: out}
‘ {pub: In})

v

<&

Membrane

Encapsulate

Na
channel

K
channel

L
channel

Imp

Imp

e Rt o B o R

sodium_ion_channel.cellml

Sodium
channel

m: {priv: in} & {pub: out}

>
4

V, t: {priv: out} & {pub: in}

" h: {priv: in} & {pub: out}

channel

1

1

1

]

1

!)
i Potassium
(]

]

1

1

]

1

1

n: {priv: in} & {pub: out}

d

‘V, t: {priv: out} & {pub: in}

P

1

1

i

i Leakage
il channel
!

]

1

_static/images/opencor_01.png

_static/images/open_ch_linear_iv.png

_static/images/opencor_anno_view.png
Edting

Simulation

» @ Units

4 @ potassium_channel
4 @ Variables
ov
X

? Enter a term above...

There s no metadata
€D assocated with the current
CelML element...

_static/images/opencor_02.png
0 7 Plugins

+ BioSignalMLDataStore Description: plugins to store and manipulate data.
+ CSVDataStore
Editing
+ CellMLAnnotationView
+ CellMLTextView
% RawCellMLView
% RawSEDMLView
+ RawTextView
Miscellaneous
+ HelpWindow
Organisation
+ FileBrowserWindow
+ FileOrganiserWindow
% PhysiomeModelRepositoryWindow
Simulation
+ SingleCellView
Solver
CVODESolver
ForwardEulerSolver
FourthOrderRungeKuttaSolver

(CJH QN J<J<]
LSE S S SN S S8 8

HeunSolver
IDASolver
KINSOLSolver
SecondOrderRungeKuttaSolver
Tool
+ CellMLTools

Show only selectable plugins
Note: OpenCOR will need to be restarted for your changes to take effect.

Apply Cancel OK

_images/sedml_export.png
[BON] OpenCOR
x Noble_1962.cellml
b . ~ Simulation 20 ,.
Property Value Unit 23 ‘
Starting point 0 ms 03
Ending point 5000 ms 'gg
Point interval 1 ms T — I —— ____ ______ _— __ _____—— _ ______ _—____
0 1,000 2,000 - 3,000 4,000 5,000
» Solvers
v Graphs 0= =
-100 3
Property Value e
> v membrane.t | membrane.n -300
-400
i . i . . . i i i ,
0 1,000 2,000 - 3,000 4,000 5,000
12 g
8
6 . H
I | |
o 0 _J -
£ = ; = ‘ = —— = = = = — ‘
5 0 1,000 2,000 - 3,000 4,000 o
130 =]
(]
5 0.8 3
= 0.6 o)
i 045 3
£ Parameters o.g .
r Property Value Unit [T 1
On 0.33028456... dimensionless . =000 4000) 5000
on -0.0368006... dimensionless/ms 15
®iK 29.1197573... microA gg ,
®iL 0.20512046... microA 043
@ i Na -58.301128... microA 023
OK 140 mM
O ko 2.5 mM 0 1,000 2,000 R 3,000 4.000 5,000
Om 0.15251850... dimensionless e :
onm 0.01707786... dimensionless/ms g-g '
On 0.36814982... dimensionless 044
o -5.9164296... dimensionless/ms P
O Nai 30 mM o
o Nao 140 mM T]
- n me 0 1,000 _ 2,000 3,000 4,000 5,000
/Users/dnic019/pmr2/opencor-pmr-tutorial/Noble_1962.cellml
Runtime: valid.
Model type: ODE.
Simulation time: 0.004 s using CVODE.

_images/sideimage_background.png

_images/variableNode.png

_images/voi.png
Y,

\ WV

_images/state.png

_images/transient_beh_gates.png

_images/volt_deps_of_gate_consts.png

_static/images/hund_2004.png

_static/images/hodgkin_1952.png

_static/images/ion_ch_gating.png

_static/images/interfaces_between_cellml_components.png
Siblings communicate
via public interface

public interface

environment

public interface
out:i_Na in: V, t

sodium_channel

private interface

Nieces, nephews, and cousins

do not directly communicate

Parents communicate

public interface

out: h in:V, t

h_gate

with children via
their private interface

Children communicate
with parents via
their public interface

public interface

out:m in:V, t

m_gate

_static/images/kinetics_of_potassium_ch.png
O® €0 lumm
v ‘Smulation’
Property Value 20

Starting point 0

Ending point 40

Pointintenal 01
< 0 »

>

4 potassium_channel_n_gat¢ |5/000

@aphen 0 | 1500 ix(t
@vean 0 |[1,000 K()
03zs|| 500
0 o

_static/images/kinetics_na_ch_votages.png
(@) V() PE ﬁfzov

"ove i [

ht) ENEPEE

gnal(t) E
iNa(t) §§ b/m ==

_static/images/first_order_plots.png
(b)

(a)

_static/images/fc_schematic.png
- —How things are now -, - - - - - A more useful system?- - - — — - .

Model Model
repository Model repository ontology annot:
Model
Mode! Library of
Gloce! generic
protocol
components

Protocol
repository

Simulatol

_static/images/hh_opencor_tabs.png

_static/images/graphical_output.png
“# OpenCOR o=

Ele View Tooks Help

D apus

‘vanderpol.celml [
O@®CB I ummN =~
2 Smiaton 23
P N
ey 13
Stating point 0
Ending point 100 04 xX(H)
Point interval 01
Fll | FE
» Solvers. V
2 “Graphs -2
ey e || = & & &
‘mainx | main.y
g n
i rethbbid
20 40 60 80
)
T : T r
i v 5 A N i
D:\Users\phun025\Documents\CMISS\OpenCOR\Models\Tutorial models \vanderpol.celiml
‘Runtime: vad.
Hodel type: O0E.

‘Simulation time: 0,002 5 using CVODE.

_static/images/hh_results_opencor.png
Ble_Yen Joos Hep

vtceint £ | soduan_on_channel.cobi™ () | potassum_jon_chanmelcobnd () | leakage_jon_charnelcelel |

OO CH | -
5 S

propery
Stating point

Ending point
Point terel

Value
o

15
o

e
millsec
millsec
millsec

oot |

_images/soln_lorenz.png
(CRCKC) OpenCOR

% lorenz.cellml
®® ¢ 8 o P =y o &
v Simulation 20 5
Property Value Unit 15 =
Starting point 0 dimensionless E
Ending point 50 dimensionless 0
Point interval 0.001 dimensionless 5 3
b Solvers 03 :
» Graphs -5 o :
Parameters 3
; -10 3 !
Property Value Unit 3 X(t)
v main -15 o '
© beta 2.66667 dimensionless [w w w ‘ ‘ ‘ ‘ ‘ ; ‘ ; ; ; ; ‘ ; ; ; ‘ ‘ ‘ ‘ ‘ ‘ ‘
© rho 28 dimensionless 0 10 20 N 30 40 50
© sigma 10 dimensionless]
Ot 0 dimensionless B
) : 20
[o % 1 dimensionless ;
> o~ 0 dimensionless/d]
£ Oy 1 dimensionless | | °]
5 oy 26 dimensionless/d a o
O: 1 dimensionless " © 7 &
= oz -1.66667 dimensionless/d B o
3 -10 - o
o 4 =
2]
& 20
40
30
20
10
0
-_—
— -15 -10 5 0 5 10 15 20
Runtime: valid.
Model type: ODE.
Simulation time: 0.013 s using CVODE.
Simulation time: 0.014 s using CVODE.

_images/ss_cur_volt.png

_images/sol_first_order_eqn.png
exponential

